node-ejs-renderer/node_modules/three/examples/jsm/shaders/SSAOShader.js
2024-06-09 13:55:01 -04:00

301 lines
6.3 KiB
JavaScript

import {
Matrix4,
Vector2
} from 'three';
/**
* References:
* http://john-chapman-graphics.blogspot.com/2013/01/ssao-tutorial.html
* https://learnopengl.com/Advanced-Lighting/SSAO
* https://github.com/McNopper/OpenGL/blob/master/Example28/shader/ssao.frag.glsl
*/
const SSAOShader = {
name: 'SSAOShader',
defines: {
'PERSPECTIVE_CAMERA': 1,
'KERNEL_SIZE': 32
},
uniforms: {
'tNormal': { value: null },
'tDepth': { value: null },
'tNoise': { value: null },
'kernel': { value: null },
'cameraNear': { value: null },
'cameraFar': { value: null },
'resolution': { value: new Vector2() },
'cameraProjectionMatrix': { value: new Matrix4() },
'cameraInverseProjectionMatrix': { value: new Matrix4() },
'kernelRadius': { value: 8 },
'minDistance': { value: 0.005 },
'maxDistance': { value: 0.05 },
},
vertexShader: /* glsl */`
varying vec2 vUv;
void main() {
vUv = uv;
gl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );
}`,
fragmentShader: /* glsl */`
uniform highp sampler2D tNormal;
uniform highp sampler2D tDepth;
uniform sampler2D tNoise;
uniform vec3 kernel[ KERNEL_SIZE ];
uniform vec2 resolution;
uniform float cameraNear;
uniform float cameraFar;
uniform mat4 cameraProjectionMatrix;
uniform mat4 cameraInverseProjectionMatrix;
uniform float kernelRadius;
uniform float minDistance; // avoid artifacts caused by neighbour fragments with minimal depth difference
uniform float maxDistance; // avoid the influence of fragments which are too far away
varying vec2 vUv;
#include <packing>
float getDepth( const in vec2 screenPosition ) {
return texture2D( tDepth, screenPosition ).x;
}
float getLinearDepth( const in vec2 screenPosition ) {
#if PERSPECTIVE_CAMERA == 1
float fragCoordZ = texture2D( tDepth, screenPosition ).x;
float viewZ = perspectiveDepthToViewZ( fragCoordZ, cameraNear, cameraFar );
return viewZToOrthographicDepth( viewZ, cameraNear, cameraFar );
#else
return texture2D( tDepth, screenPosition ).x;
#endif
}
float getViewZ( const in float depth ) {
#if PERSPECTIVE_CAMERA == 1
return perspectiveDepthToViewZ( depth, cameraNear, cameraFar );
#else
return orthographicDepthToViewZ( depth, cameraNear, cameraFar );
#endif
}
vec3 getViewPosition( const in vec2 screenPosition, const in float depth, const in float viewZ ) {
float clipW = cameraProjectionMatrix[2][3] * viewZ + cameraProjectionMatrix[3][3];
vec4 clipPosition = vec4( ( vec3( screenPosition, depth ) - 0.5 ) * 2.0, 1.0 );
clipPosition *= clipW; // unprojection.
return ( cameraInverseProjectionMatrix * clipPosition ).xyz;
}
vec3 getViewNormal( const in vec2 screenPosition ) {
return unpackRGBToNormal( texture2D( tNormal, screenPosition ).xyz );
}
void main() {
float depth = getDepth( vUv );
if ( depth == 1.0 ) {
gl_FragColor = vec4( 1.0 ); // don't influence background
} else {
float viewZ = getViewZ( depth );
vec3 viewPosition = getViewPosition( vUv, depth, viewZ );
vec3 viewNormal = getViewNormal( vUv );
vec2 noiseScale = vec2( resolution.x / 4.0, resolution.y / 4.0 );
vec3 random = vec3( texture2D( tNoise, vUv * noiseScale ).r );
// compute matrix used to reorient a kernel vector
vec3 tangent = normalize( random - viewNormal * dot( random, viewNormal ) );
vec3 bitangent = cross( viewNormal, tangent );
mat3 kernelMatrix = mat3( tangent, bitangent, viewNormal );
float occlusion = 0.0;
for ( int i = 0; i < KERNEL_SIZE; i ++ ) {
vec3 sampleVector = kernelMatrix * kernel[ i ]; // reorient sample vector in view space
vec3 samplePoint = viewPosition + ( sampleVector * kernelRadius ); // calculate sample point
vec4 samplePointNDC = cameraProjectionMatrix * vec4( samplePoint, 1.0 ); // project point and calculate NDC
samplePointNDC /= samplePointNDC.w;
vec2 samplePointUv = samplePointNDC.xy * 0.5 + 0.5; // compute uv coordinates
float realDepth = getLinearDepth( samplePointUv ); // get linear depth from depth texture
float sampleDepth = viewZToOrthographicDepth( samplePoint.z, cameraNear, cameraFar ); // compute linear depth of the sample view Z value
float delta = sampleDepth - realDepth;
if ( delta > minDistance && delta < maxDistance ) { // if fragment is before sample point, increase occlusion
occlusion += 1.0;
}
}
occlusion = clamp( occlusion / float( KERNEL_SIZE ), 0.0, 1.0 );
gl_FragColor = vec4( vec3( 1.0 - occlusion ), 1.0 );
}
}`
};
const SSAODepthShader = {
name: 'SSAODepthShader',
defines: {
'PERSPECTIVE_CAMERA': 1
},
uniforms: {
'tDepth': { value: null },
'cameraNear': { value: null },
'cameraFar': { value: null },
},
vertexShader:
`varying vec2 vUv;
void main() {
vUv = uv;
gl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );
}`,
fragmentShader:
`uniform sampler2D tDepth;
uniform float cameraNear;
uniform float cameraFar;
varying vec2 vUv;
#include <packing>
float getLinearDepth( const in vec2 screenPosition ) {
#if PERSPECTIVE_CAMERA == 1
float fragCoordZ = texture2D( tDepth, screenPosition ).x;
float viewZ = perspectiveDepthToViewZ( fragCoordZ, cameraNear, cameraFar );
return viewZToOrthographicDepth( viewZ, cameraNear, cameraFar );
#else
return texture2D( tDepth, screenPosition ).x;
#endif
}
void main() {
float depth = getLinearDepth( vUv );
gl_FragColor = vec4( vec3( 1.0 - depth ), 1.0 );
}`
};
const SSAOBlurShader = {
name: 'SSAOBlurShader',
uniforms: {
'tDiffuse': { value: null },
'resolution': { value: new Vector2() }
},
vertexShader:
`varying vec2 vUv;
void main() {
vUv = uv;
gl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );
}`,
fragmentShader:
`uniform sampler2D tDiffuse;
uniform vec2 resolution;
varying vec2 vUv;
void main() {
vec2 texelSize = ( 1.0 / resolution );
float result = 0.0;
for ( int i = - 2; i <= 2; i ++ ) {
for ( int j = - 2; j <= 2; j ++ ) {
vec2 offset = ( vec2( float( i ), float( j ) ) ) * texelSize;
result += texture2D( tDiffuse, vUv + offset ).r;
}
}
gl_FragColor = vec4( vec3( result / ( 5.0 * 5.0 ) ), 1.0 );
}`
};
export { SSAOShader, SSAODepthShader, SSAOBlurShader };