node-ejs-renderer/node_modules/three/examples/jsm/shaders/GTAOShader.js
2024-06-09 13:55:01 -04:00

425 lines
13 KiB
JavaScript

import {
DataTexture,
Matrix4,
RepeatWrapping,
Vector2,
Vector3,
} from 'three';
/**
* References:
* - implemented algorithm - GTAO
* - https://iryoku.com/downloads/Practical-Realtime-Strategies-for-Accurate-Indirect-Occlusion.pdf
* - https://github.com/Patapom/GodComplex/blob/master/Tests/TestHBIL/2018%20Mayaux%20-%20Horizon-Based%20Indirect%20Lighting%20(HBIL).pdf
*
* - other AO algorithms that are not implemented here:
* - Screen Space Ambient Occlusion (SSAO), see also SSAOShader.js
* - http://john-chapman-graphics.blogspot.com/2013/01/ssao-tutorial.html
* - https://learnopengl.com/Advanced-Lighting/SSAO
* - https://creativecoding.soe.ucsc.edu/courses/cmpm164/_schedule/AmbientOcclusion.pdf
* - https://drive.google.com/file/d/1SyagcEVplIm2KkRD3WQYSO9O0Iyi1hfy/edit
* - Scalable Ambient Occlusion (SAO), see also SAOShader.js
* - https://casual-effects.com/research/McGuire2012SAO/index.html
* - https://research.nvidia.com/sites/default/files/pubs/2012-06_Scalable-Ambient-Obscurance/McGuire12SAO.pdf
* - N8HO
* - https://github.com/N8python/n8ao
* - Horizon Based Ambient Occlusion (HBAO)
* - http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.577.2286&rep=rep1&type=pdf
* - https://www.derschmale.com/2013/12/20/an-alternative-implementation-for-hbao-2/
*
* - further reading
* - https://ceur-ws.org/Vol-3027/paper5.pdf
* - https://www.comp.nus.edu.sg/~lowkl/publications/mssao_visual_computer_2012.pdf
* - https://web.ics.purdue.edu/~tmcgraw/papers/mcgraw-ao-2008.pdf
* - https://www.activision.com/cdn/research/Practical_Real_Time_Strategies_for_Accurate_Indirect_Occlusion_NEW%20VERSION_COLOR.pdf
* - https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.390.2463&rep=rep1&type=pdf
* - https://www.intel.com/content/www/us/en/developer/articles/technical/adaptive-screen-space-ambient-occlusion.html
*/
const GTAOShader = {
name: 'GTAOShader',
defines: {
PERSPECTIVE_CAMERA: 1,
SAMPLES: 16,
NORMAL_VECTOR_TYPE: 1,
DEPTH_SWIZZLING: 'x',
SCREEN_SPACE_RADIUS: 0,
SCREEN_SPACE_RADIUS_SCALE: 100.0,
SCENE_CLIP_BOX: 0,
},
uniforms: {
tNormal: { value: null },
tDepth: { value: null },
tNoise: { value: null },
resolution: { value: new Vector2() },
cameraNear: { value: null },
cameraFar: { value: null },
cameraProjectionMatrix: { value: new Matrix4() },
cameraProjectionMatrixInverse: { value: new Matrix4() },
cameraWorldMatrix: { value: new Matrix4() },
radius: { value: 0.25 },
distanceExponent: { value: 1. },
thickness: { value: 1. },
distanceFallOff: { value: 1. },
scale: { value: 1. },
sceneBoxMin: { value: new Vector3( - 1, - 1, - 1 ) },
sceneBoxMax: { value: new Vector3( 1, 1, 1 ) },
},
vertexShader: /* glsl */`
varying vec2 vUv;
void main() {
vUv = uv;
gl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );
}`,
fragmentShader: /* glsl */`
varying vec2 vUv;
uniform highp sampler2D tNormal;
uniform highp sampler2D tDepth;
uniform sampler2D tNoise;
uniform vec2 resolution;
uniform float cameraNear;
uniform float cameraFar;
uniform mat4 cameraProjectionMatrix;
uniform mat4 cameraProjectionMatrixInverse;
uniform mat4 cameraWorldMatrix;
uniform float radius;
uniform float distanceExponent;
uniform float thickness;
uniform float distanceFallOff;
uniform float scale;
#if SCENE_CLIP_BOX == 1
uniform vec3 sceneBoxMin;
uniform vec3 sceneBoxMax;
#endif
#include <common>
#include <packing>
#ifndef FRAGMENT_OUTPUT
#define FRAGMENT_OUTPUT vec4(vec3(ao), 1.)
#endif
vec3 getViewPosition(const in vec2 screenPosition, const in float depth) {
vec4 clipSpacePosition = vec4(vec3(screenPosition, depth) * 2.0 - 1.0, 1.0);
vec4 viewSpacePosition = cameraProjectionMatrixInverse * clipSpacePosition;
return viewSpacePosition.xyz / viewSpacePosition.w;
}
float getDepth(const vec2 uv) {
return textureLod(tDepth, uv.xy, 0.0).DEPTH_SWIZZLING;
}
float fetchDepth(const ivec2 uv) {
return texelFetch(tDepth, uv.xy, 0).DEPTH_SWIZZLING;
}
float getViewZ(const in float depth) {
#if PERSPECTIVE_CAMERA == 1
return perspectiveDepthToViewZ(depth, cameraNear, cameraFar);
#else
return orthographicDepthToViewZ(depth, cameraNear, cameraFar);
#endif
}
vec3 computeNormalFromDepth(const vec2 uv) {
vec2 size = vec2(textureSize(tDepth, 0));
ivec2 p = ivec2(uv * size);
float c0 = fetchDepth(p);
float l2 = fetchDepth(p - ivec2(2, 0));
float l1 = fetchDepth(p - ivec2(1, 0));
float r1 = fetchDepth(p + ivec2(1, 0));
float r2 = fetchDepth(p + ivec2(2, 0));
float b2 = fetchDepth(p - ivec2(0, 2));
float b1 = fetchDepth(p - ivec2(0, 1));
float t1 = fetchDepth(p + ivec2(0, 1));
float t2 = fetchDepth(p + ivec2(0, 2));
float dl = abs((2.0 * l1 - l2) - c0);
float dr = abs((2.0 * r1 - r2) - c0);
float db = abs((2.0 * b1 - b2) - c0);
float dt = abs((2.0 * t1 - t2) - c0);
vec3 ce = getViewPosition(uv, c0).xyz;
vec3 dpdx = (dl < dr) ? ce - getViewPosition((uv - vec2(1.0 / size.x, 0.0)), l1).xyz : -ce + getViewPosition((uv + vec2(1.0 / size.x, 0.0)), r1).xyz;
vec3 dpdy = (db < dt) ? ce - getViewPosition((uv - vec2(0.0, 1.0 / size.y)), b1).xyz : -ce + getViewPosition((uv + vec2(0.0, 1.0 / size.y)), t1).xyz;
return normalize(cross(dpdx, dpdy));
}
vec3 getViewNormal(const vec2 uv) {
#if NORMAL_VECTOR_TYPE == 2
return normalize(textureLod(tNormal, uv, 0.).rgb);
#elif NORMAL_VECTOR_TYPE == 1
return unpackRGBToNormal(textureLod(tNormal, uv, 0.).rgb);
#else
return computeNormalFromDepth(uv);
#endif
}
vec3 getSceneUvAndDepth(vec3 sampleViewPos) {
vec4 sampleClipPos = cameraProjectionMatrix * vec4(sampleViewPos, 1.);
vec2 sampleUv = sampleClipPos.xy / sampleClipPos.w * 0.5 + 0.5;
float sampleSceneDepth = getDepth(sampleUv);
return vec3(sampleUv, sampleSceneDepth);
}
void main() {
float depth = getDepth(vUv.xy);
if (depth >= 1.0) {
discard;
return;
}
vec3 viewPos = getViewPosition(vUv, depth);
vec3 viewNormal = getViewNormal(vUv);
float radiusToUse = radius;
float distanceFalloffToUse = thickness;
#if SCREEN_SPACE_RADIUS == 1
float radiusScale = getViewPosition(vec2(0.5 + float(SCREEN_SPACE_RADIUS_SCALE) / resolution.x, 0.0), depth).x;
radiusToUse *= radiusScale;
distanceFalloffToUse *= radiusScale;
#endif
#if SCENE_CLIP_BOX == 1
vec3 worldPos = (cameraWorldMatrix * vec4(viewPos, 1.0)).xyz;
float boxDistance = length(max(vec3(0.0), max(sceneBoxMin - worldPos, worldPos - sceneBoxMax)));
if (boxDistance > radiusToUse) {
discard;
return;
}
#endif
vec2 noiseResolution = vec2(textureSize(tNoise, 0));
vec2 noiseUv = vUv * resolution / noiseResolution;
vec4 noiseTexel = textureLod(tNoise, noiseUv, 0.0);
vec3 randomVec = noiseTexel.xyz * 2.0 - 1.0;
vec3 tangent = normalize(vec3(randomVec.xy, 0.));
vec3 bitangent = vec3(-tangent.y, tangent.x, 0.);
mat3 kernelMatrix = mat3(tangent, bitangent, vec3(0., 0., 1.));
const int DIRECTIONS = SAMPLES < 30 ? 3 : 5;
const int STEPS = (SAMPLES + DIRECTIONS - 1) / DIRECTIONS;
float ao = 0.0, totalWeight = 0.0;
for (int i = 0; i < DIRECTIONS; ++i) {
float angle = float(i) / float(DIRECTIONS) * PI;
vec4 sampleDir = vec4(cos(angle), sin(angle), 0., 0.5 + 0.5 * noiseTexel.w);
sampleDir.xyz = normalize(kernelMatrix * sampleDir.xyz);
vec3 viewDir = normalize(-viewPos.xyz);
vec3 sliceBitangent = normalize(cross(sampleDir.xyz, viewDir));
vec3 sliceTangent = cross(sliceBitangent, viewDir);
vec3 normalInSlice = normalize(viewNormal - sliceBitangent * dot(viewNormal, sliceBitangent));
vec3 tangentToNormalInSlice = cross(normalInSlice, sliceBitangent);
vec2 cosHorizons = vec2(dot(viewDir, tangentToNormalInSlice), dot(viewDir, -tangentToNormalInSlice));
for (int j = 0; j < STEPS; ++j) {
vec3 sampleViewOffset = sampleDir.xyz * radiusToUse * sampleDir.w * pow(float(j + 1) / float(STEPS), distanceExponent);
vec3 sampleSceneUvDepth = getSceneUvAndDepth(viewPos + sampleViewOffset);
vec3 sampleSceneViewPos = getViewPosition(sampleSceneUvDepth.xy, sampleSceneUvDepth.z);
vec3 viewDelta = sampleSceneViewPos - viewPos;
if (abs(viewDelta.z) < thickness) {
float sampleCosHorizon = dot(viewDir, normalize(viewDelta));
cosHorizons.x += max(0., (sampleCosHorizon - cosHorizons.x) * mix(1., 2. / float(j + 2), distanceFallOff));
}
sampleSceneUvDepth = getSceneUvAndDepth(viewPos - sampleViewOffset);
sampleSceneViewPos = getViewPosition(sampleSceneUvDepth.xy, sampleSceneUvDepth.z);
viewDelta = sampleSceneViewPos - viewPos;
if (abs(viewDelta.z) < thickness) {
float sampleCosHorizon = dot(viewDir, normalize(viewDelta));
cosHorizons.y += max(0., (sampleCosHorizon - cosHorizons.y) * mix(1., 2. / float(j + 2), distanceFallOff));
}
}
vec2 sinHorizons = sqrt(1. - cosHorizons * cosHorizons);
float nx = dot(normalInSlice, sliceTangent);
float ny = dot(normalInSlice, viewDir);
float nxb = 1. / 2. * (acos(cosHorizons.y) - acos(cosHorizons.x) + sinHorizons.x * cosHorizons.x - sinHorizons.y * cosHorizons.y);
float nyb = 1. / 2. * (2. - cosHorizons.x * cosHorizons.x - cosHorizons.y * cosHorizons.y);
float occlusion = nx * nxb + ny * nyb;
ao += occlusion;
}
ao = clamp(ao / float(DIRECTIONS), 0., 1.);
#if SCENE_CLIP_BOX == 1
ao = mix(ao, 1., smoothstep(0., radiusToUse, boxDistance));
#endif
ao = pow(ao, scale);
gl_FragColor = FRAGMENT_OUTPUT;
}`
};
const GTAODepthShader = {
name: 'GTAODepthShader',
defines: {
PERSPECTIVE_CAMERA: 1
},
uniforms: {
tDepth: { value: null },
cameraNear: { value: null },
cameraFar: { value: null },
},
vertexShader: /* glsl */`
varying vec2 vUv;
void main() {
vUv = uv;
gl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );
}`,
fragmentShader: /* glsl */`
uniform sampler2D tDepth;
uniform float cameraNear;
uniform float cameraFar;
varying vec2 vUv;
#include <packing>
float getLinearDepth( const in vec2 screenPosition ) {
#if PERSPECTIVE_CAMERA == 1
float fragCoordZ = texture2D( tDepth, screenPosition ).x;
float viewZ = perspectiveDepthToViewZ( fragCoordZ, cameraNear, cameraFar );
return viewZToOrthographicDepth( viewZ, cameraNear, cameraFar );
#else
return texture2D( tDepth, screenPosition ).x;
#endif
}
void main() {
float depth = getLinearDepth( vUv );
gl_FragColor = vec4( vec3( 1.0 - depth ), 1.0 );
}`
};
const GTAOBlendShader = {
name: 'GTAOBlendShader',
uniforms: {
tDiffuse: { value: null },
intensity: { value: 1.0 }
},
vertexShader: /* glsl */`
varying vec2 vUv;
void main() {
vUv = uv;
gl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );
}`,
fragmentShader: /* glsl */`
uniform float intensity;
uniform sampler2D tDiffuse;
varying vec2 vUv;
void main() {
vec4 texel = texture2D( tDiffuse, vUv );
gl_FragColor = vec4(mix(vec3(1.), texel.rgb, intensity), texel.a);
}`
};
function generateMagicSquareNoise( size = 5 ) {
const noiseSize = Math.floor( size ) % 2 === 0 ? Math.floor( size ) + 1 : Math.floor( size );
const magicSquare = generateMagicSquare( noiseSize );
const noiseSquareSize = magicSquare.length;
const data = new Uint8Array( noiseSquareSize * 4 );
for ( let inx = 0; inx < noiseSquareSize; ++ inx ) {
const iAng = magicSquare[ inx ];
const angle = ( 2 * Math.PI * iAng ) / noiseSquareSize;
const randomVec = new Vector3(
Math.cos( angle ),
Math.sin( angle ),
0
).normalize();
data[ inx * 4 ] = ( randomVec.x * 0.5 + 0.5 ) * 255;
data[ inx * 4 + 1 ] = ( randomVec.y * 0.5 + 0.5 ) * 255;
data[ inx * 4 + 2 ] = 127;
data[ inx * 4 + 3 ] = 255;
}
const noiseTexture = new DataTexture( data, noiseSize, noiseSize );
noiseTexture.wrapS = RepeatWrapping;
noiseTexture.wrapT = RepeatWrapping;
noiseTexture.needsUpdate = true;
return noiseTexture;
}
function generateMagicSquare( size ) {
const noiseSize = Math.floor( size ) % 2 === 0 ? Math.floor( size ) + 1 : Math.floor( size );
const noiseSquareSize = noiseSize * noiseSize;
const magicSquare = Array( noiseSquareSize ).fill( 0 );
let i = Math.floor( noiseSize / 2 );
let j = noiseSize - 1;
for ( let num = 1; num <= noiseSquareSize; ) {
if ( i === - 1 && j === noiseSize ) {
j = noiseSize - 2;
i = 0;
} else {
if ( j === noiseSize ) {
j = 0;
}
if ( i < 0 ) {
i = noiseSize - 1;
}
}
if ( magicSquare[ i * noiseSize + j ] !== 0 ) {
j -= 2;
i ++;
continue;
} else {
magicSquare[ i * noiseSize + j ] = num ++;
}
j ++;
i --;
}
return magicSquare;
}
export { generateMagicSquareNoise, GTAOShader, GTAODepthShader, GTAOBlendShader };