node-ejs-renderer/node_modules/three/examples/jsm/lights/LightProbeGenerator.js
2024-06-09 13:55:01 -04:00

287 lines
6.0 KiB
JavaScript

import {
Color,
LightProbe,
LinearSRGBColorSpace,
SphericalHarmonics3,
Vector3,
SRGBColorSpace,
NoColorSpace,
HalfFloatType,
DataUtils
} from 'three';
class LightProbeGenerator {
// https://www.ppsloan.org/publications/StupidSH36.pdf
static fromCubeTexture( cubeTexture ) {
let totalWeight = 0;
const coord = new Vector3();
const dir = new Vector3();
const color = new Color();
const shBasis = [ 0, 0, 0, 0, 0, 0, 0, 0, 0 ];
const sh = new SphericalHarmonics3();
const shCoefficients = sh.coefficients;
for ( let faceIndex = 0; faceIndex < 6; faceIndex ++ ) {
const image = cubeTexture.image[ faceIndex ];
const width = image.width;
const height = image.height;
const canvas = document.createElement( 'canvas' );
canvas.width = width;
canvas.height = height;
const context = canvas.getContext( '2d' );
context.drawImage( image, 0, 0, width, height );
const imageData = context.getImageData( 0, 0, width, height );
const data = imageData.data;
const imageWidth = imageData.width; // assumed to be square
const pixelSize = 2 / imageWidth;
for ( let i = 0, il = data.length; i < il; i += 4 ) { // RGBA assumed
// pixel color
color.setRGB( data[ i ] / 255, data[ i + 1 ] / 255, data[ i + 2 ] / 255 );
// convert to linear color space
convertColorToLinear( color, cubeTexture.colorSpace );
// pixel coordinate on unit cube
const pixelIndex = i / 4;
const col = - 1 + ( pixelIndex % imageWidth + 0.5 ) * pixelSize;
const row = 1 - ( Math.floor( pixelIndex / imageWidth ) + 0.5 ) * pixelSize;
switch ( faceIndex ) {
case 0: coord.set( - 1, row, - col ); break;
case 1: coord.set( 1, row, col ); break;
case 2: coord.set( - col, 1, - row ); break;
case 3: coord.set( - col, - 1, row ); break;
case 4: coord.set( - col, row, 1 ); break;
case 5: coord.set( col, row, - 1 ); break;
}
// weight assigned to this pixel
const lengthSq = coord.lengthSq();
const weight = 4 / ( Math.sqrt( lengthSq ) * lengthSq );
totalWeight += weight;
// direction vector to this pixel
dir.copy( coord ).normalize();
// evaluate SH basis functions in direction dir
SphericalHarmonics3.getBasisAt( dir, shBasis );
// accummuulate
for ( let j = 0; j < 9; j ++ ) {
shCoefficients[ j ].x += shBasis[ j ] * color.r * weight;
shCoefficients[ j ].y += shBasis[ j ] * color.g * weight;
shCoefficients[ j ].z += shBasis[ j ] * color.b * weight;
}
}
}
// normalize
const norm = ( 4 * Math.PI ) / totalWeight;
for ( let j = 0; j < 9; j ++ ) {
shCoefficients[ j ].x *= norm;
shCoefficients[ j ].y *= norm;
shCoefficients[ j ].z *= norm;
}
return new LightProbe( sh );
}
static fromCubeRenderTarget( renderer, cubeRenderTarget ) {
// The renderTarget must be set to RGBA in order to make readRenderTargetPixels works
let totalWeight = 0;
const coord = new Vector3();
const dir = new Vector3();
const color = new Color();
const shBasis = [ 0, 0, 0, 0, 0, 0, 0, 0, 0 ];
const sh = new SphericalHarmonics3();
const shCoefficients = sh.coefficients;
const dataType = cubeRenderTarget.texture.type;
for ( let faceIndex = 0; faceIndex < 6; faceIndex ++ ) {
const imageWidth = cubeRenderTarget.width; // assumed to be square
let data;
if ( dataType === HalfFloatType ) {
data = new Uint16Array( imageWidth * imageWidth * 4 );
} else {
// assuming UnsignedByteType
data = new Uint8Array( imageWidth * imageWidth * 4 );
}
renderer.readRenderTargetPixels( cubeRenderTarget, 0, 0, imageWidth, imageWidth, data, faceIndex );
const pixelSize = 2 / imageWidth;
for ( let i = 0, il = data.length; i < il; i += 4 ) { // RGBA assumed
let r, g, b;
if ( dataType === HalfFloatType ) {
r = DataUtils.fromHalfFloat( data[ i ] );
g = DataUtils.fromHalfFloat( data[ i + 1 ] );
b = DataUtils.fromHalfFloat( data[ i + 2 ] );
} else {
r = data[ i ] / 255;
g = data[ i + 1 ] / 255;
b = data[ i + 2 ] / 255;
}
// pixel color
color.setRGB( r, g, b );
// convert to linear color space
convertColorToLinear( color, cubeRenderTarget.texture.colorSpace );
// pixel coordinate on unit cube
const pixelIndex = i / 4;
const col = - 1 + ( pixelIndex % imageWidth + 0.5 ) * pixelSize;
const row = 1 - ( Math.floor( pixelIndex / imageWidth ) + 0.5 ) * pixelSize;
switch ( faceIndex ) {
case 0: coord.set( 1, row, - col ); break;
case 1: coord.set( - 1, row, col ); break;
case 2: coord.set( col, 1, - row ); break;
case 3: coord.set( col, - 1, row ); break;
case 4: coord.set( col, row, 1 ); break;
case 5: coord.set( - col, row, - 1 ); break;
}
// weight assigned to this pixel
const lengthSq = coord.lengthSq();
const weight = 4 / ( Math.sqrt( lengthSq ) * lengthSq );
totalWeight += weight;
// direction vector to this pixel
dir.copy( coord ).normalize();
// evaluate SH basis functions in direction dir
SphericalHarmonics3.getBasisAt( dir, shBasis );
// accummuulate
for ( let j = 0; j < 9; j ++ ) {
shCoefficients[ j ].x += shBasis[ j ] * color.r * weight;
shCoefficients[ j ].y += shBasis[ j ] * color.g * weight;
shCoefficients[ j ].z += shBasis[ j ] * color.b * weight;
}
}
}
// normalize
const norm = ( 4 * Math.PI ) / totalWeight;
for ( let j = 0; j < 9; j ++ ) {
shCoefficients[ j ].x *= norm;
shCoefficients[ j ].y *= norm;
shCoefficients[ j ].z *= norm;
}
return new LightProbe( sh );
}
}
function convertColorToLinear( color, colorSpace ) {
switch ( colorSpace ) {
case SRGBColorSpace:
color.convertSRGBToLinear();
break;
case LinearSRGBColorSpace:
case NoColorSpace:
break;
default:
console.warn( 'WARNING: LightProbeGenerator convertColorToLinear() encountered an unsupported color space.' );
break;
}
return color;
}
export { LightProbeGenerator };