201 lines
5.4 KiB
JavaScript
201 lines
5.4 KiB
JavaScript
/**
|
|
* SurfaceNets in JavaScript
|
|
*
|
|
* Written by Mikola Lysenko (C) 2012
|
|
*
|
|
* MIT License
|
|
*
|
|
* Based on: S.F. Gibson, 'Constrained Elastic Surface Nets'. (1998) MERL Tech Report.
|
|
* from https://github.com/mikolalysenko/isosurface/tree/master
|
|
*
|
|
*/
|
|
|
|
let surfaceNet = ( dims, potential, bounds ) => {
|
|
|
|
|
|
//Precompute edge table, like Paul Bourke does.
|
|
// This saves a bit of time when computing the centroid of each boundary cell
|
|
var cube_edges = new Int32Array(24) , edge_table = new Int32Array(256);
|
|
(function() {
|
|
|
|
//Initialize the cube_edges table
|
|
// This is just the vertex number of each cube
|
|
var k = 0;
|
|
for(var i=0; i<8; ++i) {
|
|
for(var j=1; j<=4; j<<=1) {
|
|
var p = i^j;
|
|
if(i <= p) {
|
|
cube_edges[k++] = i;
|
|
cube_edges[k++] = p;
|
|
}
|
|
}
|
|
}
|
|
|
|
//Initialize the intersection table.
|
|
// This is a 2^(cube configuration) -> 2^(edge configuration) map
|
|
// There is one entry for each possible cube configuration, and the output is a 12-bit vector enumerating all edges crossing the 0-level.
|
|
for(var i=0; i<256; ++i) {
|
|
var em = 0;
|
|
for(var j=0; j<24; j+=2) {
|
|
var a = !!(i & (1<<cube_edges[j]))
|
|
, b = !!(i & (1<<cube_edges[j+1]));
|
|
em |= a !== b ? (1 << (j >> 1)) : 0;
|
|
}
|
|
edge_table[i] = em;
|
|
}
|
|
})();
|
|
|
|
//Internal buffer, this may get resized at run time
|
|
var buffer = new Array(4096);
|
|
(function() {
|
|
for(var i=0; i<buffer.length; ++i) {
|
|
buffer[i] = 0;
|
|
}
|
|
})();
|
|
|
|
if(!bounds) {
|
|
bounds = [[0,0,0],dims];
|
|
}
|
|
|
|
var scale = [0,0,0];
|
|
var shift = [0,0,0];
|
|
for(var i=0; i<3; ++i) {
|
|
scale[i] = (bounds[1][i] - bounds[0][i]) / dims[i];
|
|
shift[i] = bounds[0][i];
|
|
}
|
|
|
|
var vertices = []
|
|
, faces = []
|
|
, n = 0
|
|
, x = [0, 0, 0]
|
|
, R = [1, (dims[0]+1), (dims[0]+1)*(dims[1]+1)]
|
|
, grid = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
|
|
, buf_no = 1;
|
|
|
|
|
|
//Resize buffer if necessary
|
|
if(R[2] * 2 > buffer.length) {
|
|
var ol = buffer.length;
|
|
buffer.length = R[2] * 2;
|
|
while(ol < buffer.length) {
|
|
buffer[ol++] = 0;
|
|
}
|
|
}
|
|
|
|
//March over the voxel grid
|
|
for(x[2]=0; x[2]<dims[2]-1; ++x[2], n+=dims[0], buf_no ^= 1, R[2]=-R[2]) {
|
|
|
|
//m is the pointer into the buffer we are going to use.
|
|
//This is slightly obtuse because javascript does not have good support for packed data structures, so we must use typed arrays :(
|
|
//The contents of the buffer will be the indices of the vertices on the previous x/y slice of the volume
|
|
var m = 1 + (dims[0]+1) * (1 + buf_no * (dims[1]+1));
|
|
|
|
for(x[1]=0; x[1]<dims[1]-1; ++x[1], ++n, m+=2)
|
|
for(x[0]=0; x[0]<dims[0]-1; ++x[0], ++n, ++m) {
|
|
|
|
//Read in 8 field values around this vertex and store them in an array
|
|
//Also calculate 8-bit mask, like in marching cubes, so we can speed up sign checks later
|
|
var mask = 0, g = 0;
|
|
for(var k=0; k<2; ++k)
|
|
for(var j=0; j<2; ++j)
|
|
for(var i=0; i<2; ++i, ++g) {
|
|
var p = potential(
|
|
scale[0]*(x[0]+i)+shift[0],
|
|
scale[1]*(x[1]+j)+shift[1],
|
|
scale[2]*(x[2]+k)+shift[2]);
|
|
grid[g] = p;
|
|
mask |= (p < 0) ? (1<<g) : 0;
|
|
}
|
|
|
|
//Check for early termination if cell does not intersect boundary
|
|
if(mask === 0 || mask === 0xff) {
|
|
continue;
|
|
}
|
|
|
|
//Sum up edge intersections
|
|
var edge_mask = edge_table[mask]
|
|
, v = [0.0,0.0,0.0]
|
|
, e_count = 0;
|
|
|
|
//For every edge of the cube...
|
|
for(var i=0; i<12; ++i) {
|
|
|
|
//Use edge mask to check if it is crossed
|
|
if(!(edge_mask & (1<<i))) {
|
|
continue;
|
|
}
|
|
|
|
//If it did, increment number of edge crossings
|
|
++e_count;
|
|
|
|
//Now find the point of intersection
|
|
var e0 = cube_edges[ i<<1 ] //Unpack vertices
|
|
, e1 = cube_edges[(i<<1)+1]
|
|
, g0 = grid[e0] //Unpack grid values
|
|
, g1 = grid[e1]
|
|
, t = g0 - g1; //Compute point of intersection
|
|
if(Math.abs(t) > 1e-6) {
|
|
t = g0 / t;
|
|
} else {
|
|
continue;
|
|
}
|
|
|
|
//Interpolate vertices and add up intersections (this can be done without multiplying)
|
|
for(var j=0, k=1; j<3; ++j, k<<=1) {
|
|
var a = e0 & k
|
|
, b = e1 & k;
|
|
if(a !== b) {
|
|
v[j] += a ? 1.0 - t : t;
|
|
} else {
|
|
v[j] += a ? 1.0 : 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
//Now we just average the edge intersections and add them to coordinate
|
|
var s = 1.0 / e_count;
|
|
for(var i=0; i<3; ++i) {
|
|
v[i] = scale[i] * (x[i] + s * v[i]) + shift[i];
|
|
}
|
|
|
|
//Add vertex to buffer, store pointer to vertex index in buffer
|
|
buffer[m] = vertices.length;
|
|
vertices.push(v);
|
|
|
|
//Now we need to add faces together, to do this we just loop over 3 basis components
|
|
for(var i=0; i<3; ++i) {
|
|
//The first three entries of the edge_mask count the crossings along the edge
|
|
if(!(edge_mask & (1<<i)) ) {
|
|
continue;
|
|
}
|
|
|
|
// i = axes we are point along. iu, iv = orthogonal axes
|
|
var iu = (i+1)%3
|
|
, iv = (i+2)%3;
|
|
|
|
//If we are on a boundary, skip it
|
|
if(x[iu] === 0 || x[iv] === 0) {
|
|
continue;
|
|
}
|
|
|
|
//Otherwise, look up adjacent edges in buffer
|
|
var du = R[iu]
|
|
, dv = R[iv];
|
|
|
|
//Remember to flip orientation depending on the sign of the corner.
|
|
if(mask & 1) {
|
|
faces.push([buffer[m], buffer[m-du], buffer[m-dv]]);
|
|
faces.push([buffer[m-dv], buffer[m-du], buffer[m-du-dv]]);
|
|
} else {
|
|
faces.push([buffer[m], buffer[m-dv], buffer[m-du]]);
|
|
faces.push([buffer[m-du], buffer[m-dv], buffer[m-du-dv]]);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
//All done! Return the result
|
|
return { positions: vertices, cells: faces };
|
|
}
|
|
|
|
export { surfaceNet } |