node-ejs-renderer/node_modules/three/examples/jsm/exporters/GLTFExporter.js
2024-06-09 13:55:01 -04:00

3381 lines
78 KiB
JavaScript

import {
BufferAttribute,
ClampToEdgeWrapping,
Color,
DoubleSide,
InterpolateDiscrete,
InterpolateLinear,
NoColorSpace,
LinearFilter,
LinearMipmapLinearFilter,
LinearMipmapNearestFilter,
MathUtils,
Matrix4,
MirroredRepeatWrapping,
NearestFilter,
NearestMipmapLinearFilter,
NearestMipmapNearestFilter,
PropertyBinding,
RGBAFormat,
RepeatWrapping,
Scene,
Source,
SRGBColorSpace,
CompressedTexture,
Vector3,
Quaternion,
REVISION
} from 'three';
import { decompress } from './../utils/TextureUtils.js';
/**
* The KHR_mesh_quantization extension allows these extra attribute component types
*
* @see https://github.com/KhronosGroup/glTF/blob/main/extensions/2.0/Khronos/KHR_mesh_quantization/README.md#extending-mesh-attributes
*/
const KHR_mesh_quantization_ExtraAttrTypes = {
POSITION: [
'byte',
'byte normalized',
'unsigned byte',
'unsigned byte normalized',
'short',
'short normalized',
'unsigned short',
'unsigned short normalized',
],
NORMAL: [
'byte normalized',
'short normalized',
],
TANGENT: [
'byte normalized',
'short normalized',
],
TEXCOORD: [
'byte',
'byte normalized',
'unsigned byte',
'short',
'short normalized',
'unsigned short',
],
};
class GLTFExporter {
constructor() {
this.pluginCallbacks = [];
this.register( function ( writer ) {
return new GLTFLightExtension( writer );
} );
this.register( function ( writer ) {
return new GLTFMaterialsUnlitExtension( writer );
} );
this.register( function ( writer ) {
return new GLTFMaterialsTransmissionExtension( writer );
} );
this.register( function ( writer ) {
return new GLTFMaterialsVolumeExtension( writer );
} );
this.register( function ( writer ) {
return new GLTFMaterialsIorExtension( writer );
} );
this.register( function ( writer ) {
return new GLTFMaterialsSpecularExtension( writer );
} );
this.register( function ( writer ) {
return new GLTFMaterialsClearcoatExtension( writer );
} );
this.register( function ( writer ) {
return new GLTFMaterialsDispersionExtension( writer );
} );
this.register( function ( writer ) {
return new GLTFMaterialsIridescenceExtension( writer );
} );
this.register( function ( writer ) {
return new GLTFMaterialsSheenExtension( writer );
} );
this.register( function ( writer ) {
return new GLTFMaterialsAnisotropyExtension( writer );
} );
this.register( function ( writer ) {
return new GLTFMaterialsEmissiveStrengthExtension( writer );
} );
this.register( function ( writer ) {
return new GLTFMaterialsBumpExtension( writer );
} );
this.register( function ( writer ) {
return new GLTFMeshGpuInstancing( writer );
} );
}
register( callback ) {
if ( this.pluginCallbacks.indexOf( callback ) === - 1 ) {
this.pluginCallbacks.push( callback );
}
return this;
}
unregister( callback ) {
if ( this.pluginCallbacks.indexOf( callback ) !== - 1 ) {
this.pluginCallbacks.splice( this.pluginCallbacks.indexOf( callback ), 1 );
}
return this;
}
/**
* Parse scenes and generate GLTF output
* @param {Scene or [THREE.Scenes]} input Scene or Array of THREE.Scenes
* @param {Function} onDone Callback on completed
* @param {Function} onError Callback on errors
* @param {Object} options options
*/
parse( input, onDone, onError, options ) {
const writer = new GLTFWriter();
const plugins = [];
for ( let i = 0, il = this.pluginCallbacks.length; i < il; i ++ ) {
plugins.push( this.pluginCallbacks[ i ]( writer ) );
}
writer.setPlugins( plugins );
writer.write( input, onDone, options ).catch( onError );
}
parseAsync( input, options ) {
const scope = this;
return new Promise( function ( resolve, reject ) {
scope.parse( input, resolve, reject, options );
} );
}
}
//------------------------------------------------------------------------------
// Constants
//------------------------------------------------------------------------------
const WEBGL_CONSTANTS = {
POINTS: 0x0000,
LINES: 0x0001,
LINE_LOOP: 0x0002,
LINE_STRIP: 0x0003,
TRIANGLES: 0x0004,
TRIANGLE_STRIP: 0x0005,
TRIANGLE_FAN: 0x0006,
BYTE: 0x1400,
UNSIGNED_BYTE: 0x1401,
SHORT: 0x1402,
UNSIGNED_SHORT: 0x1403,
INT: 0x1404,
UNSIGNED_INT: 0x1405,
FLOAT: 0x1406,
ARRAY_BUFFER: 0x8892,
ELEMENT_ARRAY_BUFFER: 0x8893,
NEAREST: 0x2600,
LINEAR: 0x2601,
NEAREST_MIPMAP_NEAREST: 0x2700,
LINEAR_MIPMAP_NEAREST: 0x2701,
NEAREST_MIPMAP_LINEAR: 0x2702,
LINEAR_MIPMAP_LINEAR: 0x2703,
CLAMP_TO_EDGE: 33071,
MIRRORED_REPEAT: 33648,
REPEAT: 10497
};
const KHR_MESH_QUANTIZATION = 'KHR_mesh_quantization';
const THREE_TO_WEBGL = {};
THREE_TO_WEBGL[ NearestFilter ] = WEBGL_CONSTANTS.NEAREST;
THREE_TO_WEBGL[ NearestMipmapNearestFilter ] = WEBGL_CONSTANTS.NEAREST_MIPMAP_NEAREST;
THREE_TO_WEBGL[ NearestMipmapLinearFilter ] = WEBGL_CONSTANTS.NEAREST_MIPMAP_LINEAR;
THREE_TO_WEBGL[ LinearFilter ] = WEBGL_CONSTANTS.LINEAR;
THREE_TO_WEBGL[ LinearMipmapNearestFilter ] = WEBGL_CONSTANTS.LINEAR_MIPMAP_NEAREST;
THREE_TO_WEBGL[ LinearMipmapLinearFilter ] = WEBGL_CONSTANTS.LINEAR_MIPMAP_LINEAR;
THREE_TO_WEBGL[ ClampToEdgeWrapping ] = WEBGL_CONSTANTS.CLAMP_TO_EDGE;
THREE_TO_WEBGL[ RepeatWrapping ] = WEBGL_CONSTANTS.REPEAT;
THREE_TO_WEBGL[ MirroredRepeatWrapping ] = WEBGL_CONSTANTS.MIRRORED_REPEAT;
const PATH_PROPERTIES = {
scale: 'scale',
position: 'translation',
quaternion: 'rotation',
morphTargetInfluences: 'weights'
};
const DEFAULT_SPECULAR_COLOR = new Color();
// GLB constants
// https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#glb-file-format-specification
const GLB_HEADER_BYTES = 12;
const GLB_HEADER_MAGIC = 0x46546C67;
const GLB_VERSION = 2;
const GLB_CHUNK_PREFIX_BYTES = 8;
const GLB_CHUNK_TYPE_JSON = 0x4E4F534A;
const GLB_CHUNK_TYPE_BIN = 0x004E4942;
//------------------------------------------------------------------------------
// Utility functions
//------------------------------------------------------------------------------
/**
* Compare two arrays
* @param {Array} array1 Array 1 to compare
* @param {Array} array2 Array 2 to compare
* @return {Boolean} Returns true if both arrays are equal
*/
function equalArray( array1, array2 ) {
return ( array1.length === array2.length ) && array1.every( function ( element, index ) {
return element === array2[ index ];
} );
}
/**
* Converts a string to an ArrayBuffer.
* @param {string} text
* @return {ArrayBuffer}
*/
function stringToArrayBuffer( text ) {
return new TextEncoder().encode( text ).buffer;
}
/**
* Is identity matrix
*
* @param {Matrix4} matrix
* @returns {Boolean} Returns true, if parameter is identity matrix
*/
function isIdentityMatrix( matrix ) {
return equalArray( matrix.elements, [ 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1 ] );
}
/**
* Get the min and max vectors from the given attribute
* @param {BufferAttribute} attribute Attribute to find the min/max in range from start to start + count
* @param {Integer} start
* @param {Integer} count
* @return {Object} Object containing the `min` and `max` values (As an array of attribute.itemSize components)
*/
function getMinMax( attribute, start, count ) {
const output = {
min: new Array( attribute.itemSize ).fill( Number.POSITIVE_INFINITY ),
max: new Array( attribute.itemSize ).fill( Number.NEGATIVE_INFINITY )
};
for ( let i = start; i < start + count; i ++ ) {
for ( let a = 0; a < attribute.itemSize; a ++ ) {
let value;
if ( attribute.itemSize > 4 ) {
// no support for interleaved data for itemSize > 4
value = attribute.array[ i * attribute.itemSize + a ];
} else {
if ( a === 0 ) value = attribute.getX( i );
else if ( a === 1 ) value = attribute.getY( i );
else if ( a === 2 ) value = attribute.getZ( i );
else if ( a === 3 ) value = attribute.getW( i );
if ( attribute.normalized === true ) {
value = MathUtils.normalize( value, attribute.array );
}
}
output.min[ a ] = Math.min( output.min[ a ], value );
output.max[ a ] = Math.max( output.max[ a ], value );
}
}
return output;
}
/**
* Get the required size + padding for a buffer, rounded to the next 4-byte boundary.
* https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#data-alignment
*
* @param {Integer} bufferSize The size the original buffer.
* @returns {Integer} new buffer size with required padding.
*
*/
function getPaddedBufferSize( bufferSize ) {
return Math.ceil( bufferSize / 4 ) * 4;
}
/**
* Returns a buffer aligned to 4-byte boundary.
*
* @param {ArrayBuffer} arrayBuffer Buffer to pad
* @param {Integer} paddingByte (Optional)
* @returns {ArrayBuffer} The same buffer if it's already aligned to 4-byte boundary or a new buffer
*/
function getPaddedArrayBuffer( arrayBuffer, paddingByte = 0 ) {
const paddedLength = getPaddedBufferSize( arrayBuffer.byteLength );
if ( paddedLength !== arrayBuffer.byteLength ) {
const array = new Uint8Array( paddedLength );
array.set( new Uint8Array( arrayBuffer ) );
if ( paddingByte !== 0 ) {
for ( let i = arrayBuffer.byteLength; i < paddedLength; i ++ ) {
array[ i ] = paddingByte;
}
}
return array.buffer;
}
return arrayBuffer;
}
function getCanvas() {
if ( typeof document === 'undefined' && typeof OffscreenCanvas !== 'undefined' ) {
return new OffscreenCanvas( 1, 1 );
}
return document.createElement( 'canvas' );
}
function getToBlobPromise( canvas, mimeType ) {
if ( canvas.toBlob !== undefined ) {
return new Promise( ( resolve ) => canvas.toBlob( resolve, mimeType ) );
}
let quality;
// Blink's implementation of convertToBlob seems to default to a quality level of 100%
// Use the Blink default quality levels of toBlob instead so that file sizes are comparable.
if ( mimeType === 'image/jpeg' ) {
quality = 0.92;
} else if ( mimeType === 'image/webp' ) {
quality = 0.8;
}
return canvas.convertToBlob( {
type: mimeType,
quality: quality
} );
}
/**
* Writer
*/
class GLTFWriter {
constructor() {
this.plugins = [];
this.options = {};
this.pending = [];
this.buffers = [];
this.byteOffset = 0;
this.buffers = [];
this.nodeMap = new Map();
this.skins = [];
this.extensionsUsed = {};
this.extensionsRequired = {};
this.uids = new Map();
this.uid = 0;
this.json = {
asset: {
version: '2.0',
generator: 'THREE.GLTFExporter r' + REVISION
}
};
this.cache = {
meshes: new Map(),
attributes: new Map(),
attributesNormalized: new Map(),
materials: new Map(),
textures: new Map(),
images: new Map()
};
}
setPlugins( plugins ) {
this.plugins = plugins;
}
/**
* Parse scenes and generate GLTF output
* @param {Scene or [THREE.Scenes]} input Scene or Array of THREE.Scenes
* @param {Function} onDone Callback on completed
* @param {Object} options options
*/
async write( input, onDone, options = {} ) {
this.options = Object.assign( {
// default options
binary: false,
trs: false,
onlyVisible: true,
maxTextureSize: Infinity,
animations: [],
includeCustomExtensions: false
}, options );
if ( this.options.animations.length > 0 ) {
// Only TRS properties, and not matrices, may be targeted by animation.
this.options.trs = true;
}
this.processInput( input );
await Promise.all( this.pending );
const writer = this;
const buffers = writer.buffers;
const json = writer.json;
options = writer.options;
const extensionsUsed = writer.extensionsUsed;
const extensionsRequired = writer.extensionsRequired;
// Merge buffers.
const blob = new Blob( buffers, { type: 'application/octet-stream' } );
// Declare extensions.
const extensionsUsedList = Object.keys( extensionsUsed );
const extensionsRequiredList = Object.keys( extensionsRequired );
if ( extensionsUsedList.length > 0 ) json.extensionsUsed = extensionsUsedList;
if ( extensionsRequiredList.length > 0 ) json.extensionsRequired = extensionsRequiredList;
// Update bytelength of the single buffer.
if ( json.buffers && json.buffers.length > 0 ) json.buffers[ 0 ].byteLength = blob.size;
if ( options.binary === true ) {
// https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#glb-file-format-specification
const reader = new FileReader();
reader.readAsArrayBuffer( blob );
reader.onloadend = function () {
// Binary chunk.
const binaryChunk = getPaddedArrayBuffer( reader.result );
const binaryChunkPrefix = new DataView( new ArrayBuffer( GLB_CHUNK_PREFIX_BYTES ) );
binaryChunkPrefix.setUint32( 0, binaryChunk.byteLength, true );
binaryChunkPrefix.setUint32( 4, GLB_CHUNK_TYPE_BIN, true );
// JSON chunk.
const jsonChunk = getPaddedArrayBuffer( stringToArrayBuffer( JSON.stringify( json ) ), 0x20 );
const jsonChunkPrefix = new DataView( new ArrayBuffer( GLB_CHUNK_PREFIX_BYTES ) );
jsonChunkPrefix.setUint32( 0, jsonChunk.byteLength, true );
jsonChunkPrefix.setUint32( 4, GLB_CHUNK_TYPE_JSON, true );
// GLB header.
const header = new ArrayBuffer( GLB_HEADER_BYTES );
const headerView = new DataView( header );
headerView.setUint32( 0, GLB_HEADER_MAGIC, true );
headerView.setUint32( 4, GLB_VERSION, true );
const totalByteLength = GLB_HEADER_BYTES
+ jsonChunkPrefix.byteLength + jsonChunk.byteLength
+ binaryChunkPrefix.byteLength + binaryChunk.byteLength;
headerView.setUint32( 8, totalByteLength, true );
const glbBlob = new Blob( [
header,
jsonChunkPrefix,
jsonChunk,
binaryChunkPrefix,
binaryChunk
], { type: 'application/octet-stream' } );
const glbReader = new FileReader();
glbReader.readAsArrayBuffer( glbBlob );
glbReader.onloadend = function () {
onDone( glbReader.result );
};
};
} else {
if ( json.buffers && json.buffers.length > 0 ) {
const reader = new FileReader();
reader.readAsDataURL( blob );
reader.onloadend = function () {
const base64data = reader.result;
json.buffers[ 0 ].uri = base64data;
onDone( json );
};
} else {
onDone( json );
}
}
}
/**
* Serializes a userData.
*
* @param {THREE.Object3D|THREE.Material} object
* @param {Object} objectDef
*/
serializeUserData( object, objectDef ) {
if ( Object.keys( object.userData ).length === 0 ) return;
const options = this.options;
const extensionsUsed = this.extensionsUsed;
try {
const json = JSON.parse( JSON.stringify( object.userData ) );
if ( options.includeCustomExtensions && json.gltfExtensions ) {
if ( objectDef.extensions === undefined ) objectDef.extensions = {};
for ( const extensionName in json.gltfExtensions ) {
objectDef.extensions[ extensionName ] = json.gltfExtensions[ extensionName ];
extensionsUsed[ extensionName ] = true;
}
delete json.gltfExtensions;
}
if ( Object.keys( json ).length > 0 ) objectDef.extras = json;
} catch ( error ) {
console.warn( 'THREE.GLTFExporter: userData of \'' + object.name + '\' ' +
'won\'t be serialized because of JSON.stringify error - ' + error.message );
}
}
/**
* Returns ids for buffer attributes.
* @param {Object} object
* @return {Integer}
*/
getUID( attribute, isRelativeCopy = false ) {
if ( this.uids.has( attribute ) === false ) {
const uids = new Map();
uids.set( true, this.uid ++ );
uids.set( false, this.uid ++ );
this.uids.set( attribute, uids );
}
const uids = this.uids.get( attribute );
return uids.get( isRelativeCopy );
}
/**
* Checks if normal attribute values are normalized.
*
* @param {BufferAttribute} normal
* @returns {Boolean}
*/
isNormalizedNormalAttribute( normal ) {
const cache = this.cache;
if ( cache.attributesNormalized.has( normal ) ) return false;
const v = new Vector3();
for ( let i = 0, il = normal.count; i < il; i ++ ) {
// 0.0005 is from glTF-validator
if ( Math.abs( v.fromBufferAttribute( normal, i ).length() - 1.0 ) > 0.0005 ) return false;
}
return true;
}
/**
* Creates normalized normal buffer attribute.
*
* @param {BufferAttribute} normal
* @returns {BufferAttribute}
*
*/
createNormalizedNormalAttribute( normal ) {
const cache = this.cache;
if ( cache.attributesNormalized.has( normal ) ) return cache.attributesNormalized.get( normal );
const attribute = normal.clone();
const v = new Vector3();
for ( let i = 0, il = attribute.count; i < il; i ++ ) {
v.fromBufferAttribute( attribute, i );
if ( v.x === 0 && v.y === 0 && v.z === 0 ) {
// if values can't be normalized set (1, 0, 0)
v.setX( 1.0 );
} else {
v.normalize();
}
attribute.setXYZ( i, v.x, v.y, v.z );
}
cache.attributesNormalized.set( normal, attribute );
return attribute;
}
/**
* Applies a texture transform, if present, to the map definition. Requires
* the KHR_texture_transform extension.
*
* @param {Object} mapDef
* @param {THREE.Texture} texture
*/
applyTextureTransform( mapDef, texture ) {
let didTransform = false;
const transformDef = {};
if ( texture.offset.x !== 0 || texture.offset.y !== 0 ) {
transformDef.offset = texture.offset.toArray();
didTransform = true;
}
if ( texture.rotation !== 0 ) {
transformDef.rotation = texture.rotation;
didTransform = true;
}
if ( texture.repeat.x !== 1 || texture.repeat.y !== 1 ) {
transformDef.scale = texture.repeat.toArray();
didTransform = true;
}
if ( didTransform ) {
mapDef.extensions = mapDef.extensions || {};
mapDef.extensions[ 'KHR_texture_transform' ] = transformDef;
this.extensionsUsed[ 'KHR_texture_transform' ] = true;
}
}
buildMetalRoughTexture( metalnessMap, roughnessMap ) {
if ( metalnessMap === roughnessMap ) return metalnessMap;
function getEncodingConversion( map ) {
if ( map.colorSpace === SRGBColorSpace ) {
return function SRGBToLinear( c ) {
return ( c < 0.04045 ) ? c * 0.0773993808 : Math.pow( c * 0.9478672986 + 0.0521327014, 2.4 );
};
}
return function LinearToLinear( c ) {
return c;
};
}
console.warn( 'THREE.GLTFExporter: Merged metalnessMap and roughnessMap textures.' );
if ( metalnessMap instanceof CompressedTexture ) {
metalnessMap = decompress( metalnessMap );
}
if ( roughnessMap instanceof CompressedTexture ) {
roughnessMap = decompress( roughnessMap );
}
const metalness = metalnessMap ? metalnessMap.image : null;
const roughness = roughnessMap ? roughnessMap.image : null;
const width = Math.max( metalness ? metalness.width : 0, roughness ? roughness.width : 0 );
const height = Math.max( metalness ? metalness.height : 0, roughness ? roughness.height : 0 );
const canvas = getCanvas();
canvas.width = width;
canvas.height = height;
const context = canvas.getContext( '2d' );
context.fillStyle = '#00ffff';
context.fillRect( 0, 0, width, height );
const composite = context.getImageData( 0, 0, width, height );
if ( metalness ) {
context.drawImage( metalness, 0, 0, width, height );
const convert = getEncodingConversion( metalnessMap );
const data = context.getImageData( 0, 0, width, height ).data;
for ( let i = 2; i < data.length; i += 4 ) {
composite.data[ i ] = convert( data[ i ] / 256 ) * 256;
}
}
if ( roughness ) {
context.drawImage( roughness, 0, 0, width, height );
const convert = getEncodingConversion( roughnessMap );
const data = context.getImageData( 0, 0, width, height ).data;
for ( let i = 1; i < data.length; i += 4 ) {
composite.data[ i ] = convert( data[ i ] / 256 ) * 256;
}
}
context.putImageData( composite, 0, 0 );
//
const reference = metalnessMap || roughnessMap;
const texture = reference.clone();
texture.source = new Source( canvas );
texture.colorSpace = NoColorSpace;
texture.channel = ( metalnessMap || roughnessMap ).channel;
if ( metalnessMap && roughnessMap && metalnessMap.channel !== roughnessMap.channel ) {
console.warn( 'THREE.GLTFExporter: UV channels for metalnessMap and roughnessMap textures must match.' );
}
return texture;
}
/**
* Process a buffer to append to the default one.
* @param {ArrayBuffer} buffer
* @return {Integer}
*/
processBuffer( buffer ) {
const json = this.json;
const buffers = this.buffers;
if ( ! json.buffers ) json.buffers = [ { byteLength: 0 } ];
// All buffers are merged before export.
buffers.push( buffer );
return 0;
}
/**
* Process and generate a BufferView
* @param {BufferAttribute} attribute
* @param {number} componentType
* @param {number} start
* @param {number} count
* @param {number} target (Optional) Target usage of the BufferView
* @return {Object}
*/
processBufferView( attribute, componentType, start, count, target ) {
const json = this.json;
if ( ! json.bufferViews ) json.bufferViews = [];
// Create a new dataview and dump the attribute's array into it
let componentSize;
switch ( componentType ) {
case WEBGL_CONSTANTS.BYTE:
case WEBGL_CONSTANTS.UNSIGNED_BYTE:
componentSize = 1;
break;
case WEBGL_CONSTANTS.SHORT:
case WEBGL_CONSTANTS.UNSIGNED_SHORT:
componentSize = 2;
break;
default:
componentSize = 4;
}
let byteStride = attribute.itemSize * componentSize;
if ( target === WEBGL_CONSTANTS.ARRAY_BUFFER ) {
// Each element of a vertex attribute MUST be aligned to 4-byte boundaries
// inside a bufferView
byteStride = Math.ceil( byteStride / 4 ) * 4;
}
const byteLength = getPaddedBufferSize( count * byteStride );
const dataView = new DataView( new ArrayBuffer( byteLength ) );
let offset = 0;
for ( let i = start; i < start + count; i ++ ) {
for ( let a = 0; a < attribute.itemSize; a ++ ) {
let value;
if ( attribute.itemSize > 4 ) {
// no support for interleaved data for itemSize > 4
value = attribute.array[ i * attribute.itemSize + a ];
} else {
if ( a === 0 ) value = attribute.getX( i );
else if ( a === 1 ) value = attribute.getY( i );
else if ( a === 2 ) value = attribute.getZ( i );
else if ( a === 3 ) value = attribute.getW( i );
if ( attribute.normalized === true ) {
value = MathUtils.normalize( value, attribute.array );
}
}
if ( componentType === WEBGL_CONSTANTS.FLOAT ) {
dataView.setFloat32( offset, value, true );
} else if ( componentType === WEBGL_CONSTANTS.INT ) {
dataView.setInt32( offset, value, true );
} else if ( componentType === WEBGL_CONSTANTS.UNSIGNED_INT ) {
dataView.setUint32( offset, value, true );
} else if ( componentType === WEBGL_CONSTANTS.SHORT ) {
dataView.setInt16( offset, value, true );
} else if ( componentType === WEBGL_CONSTANTS.UNSIGNED_SHORT ) {
dataView.setUint16( offset, value, true );
} else if ( componentType === WEBGL_CONSTANTS.BYTE ) {
dataView.setInt8( offset, value );
} else if ( componentType === WEBGL_CONSTANTS.UNSIGNED_BYTE ) {
dataView.setUint8( offset, value );
}
offset += componentSize;
}
if ( ( offset % byteStride ) !== 0 ) {
offset += byteStride - ( offset % byteStride );
}
}
const bufferViewDef = {
buffer: this.processBuffer( dataView.buffer ),
byteOffset: this.byteOffset,
byteLength: byteLength
};
if ( target !== undefined ) bufferViewDef.target = target;
if ( target === WEBGL_CONSTANTS.ARRAY_BUFFER ) {
// Only define byteStride for vertex attributes.
bufferViewDef.byteStride = byteStride;
}
this.byteOffset += byteLength;
json.bufferViews.push( bufferViewDef );
// @TODO Merge bufferViews where possible.
const output = {
id: json.bufferViews.length - 1,
byteLength: 0
};
return output;
}
/**
* Process and generate a BufferView from an image Blob.
* @param {Blob} blob
* @return {Promise<Integer>}
*/
processBufferViewImage( blob ) {
const writer = this;
const json = writer.json;
if ( ! json.bufferViews ) json.bufferViews = [];
return new Promise( function ( resolve ) {
const reader = new FileReader();
reader.readAsArrayBuffer( blob );
reader.onloadend = function () {
const buffer = getPaddedArrayBuffer( reader.result );
const bufferViewDef = {
buffer: writer.processBuffer( buffer ),
byteOffset: writer.byteOffset,
byteLength: buffer.byteLength
};
writer.byteOffset += buffer.byteLength;
resolve( json.bufferViews.push( bufferViewDef ) - 1 );
};
} );
}
/**
* Process attribute to generate an accessor
* @param {BufferAttribute} attribute Attribute to process
* @param {THREE.BufferGeometry} geometry (Optional) Geometry used for truncated draw range
* @param {Integer} start (Optional)
* @param {Integer} count (Optional)
* @return {Integer|null} Index of the processed accessor on the "accessors" array
*/
processAccessor( attribute, geometry, start, count ) {
const json = this.json;
const types = {
1: 'SCALAR',
2: 'VEC2',
3: 'VEC3',
4: 'VEC4',
9: 'MAT3',
16: 'MAT4'
};
let componentType;
// Detect the component type of the attribute array
if ( attribute.array.constructor === Float32Array ) {
componentType = WEBGL_CONSTANTS.FLOAT;
} else if ( attribute.array.constructor === Int32Array ) {
componentType = WEBGL_CONSTANTS.INT;
} else if ( attribute.array.constructor === Uint32Array ) {
componentType = WEBGL_CONSTANTS.UNSIGNED_INT;
} else if ( attribute.array.constructor === Int16Array ) {
componentType = WEBGL_CONSTANTS.SHORT;
} else if ( attribute.array.constructor === Uint16Array ) {
componentType = WEBGL_CONSTANTS.UNSIGNED_SHORT;
} else if ( attribute.array.constructor === Int8Array ) {
componentType = WEBGL_CONSTANTS.BYTE;
} else if ( attribute.array.constructor === Uint8Array ) {
componentType = WEBGL_CONSTANTS.UNSIGNED_BYTE;
} else {
throw new Error( 'THREE.GLTFExporter: Unsupported bufferAttribute component type: ' + attribute.array.constructor.name );
}
if ( start === undefined ) start = 0;
if ( count === undefined || count === Infinity ) count = attribute.count;
// Skip creating an accessor if the attribute doesn't have data to export
if ( count === 0 ) return null;
const minMax = getMinMax( attribute, start, count );
let bufferViewTarget;
// If geometry isn't provided, don't infer the target usage of the bufferView. For
// animation samplers, target must not be set.
if ( geometry !== undefined ) {
bufferViewTarget = attribute === geometry.index ? WEBGL_CONSTANTS.ELEMENT_ARRAY_BUFFER : WEBGL_CONSTANTS.ARRAY_BUFFER;
}
const bufferView = this.processBufferView( attribute, componentType, start, count, bufferViewTarget );
const accessorDef = {
bufferView: bufferView.id,
byteOffset: bufferView.byteOffset,
componentType: componentType,
count: count,
max: minMax.max,
min: minMax.min,
type: types[ attribute.itemSize ]
};
if ( attribute.normalized === true ) accessorDef.normalized = true;
if ( ! json.accessors ) json.accessors = [];
return json.accessors.push( accessorDef ) - 1;
}
/**
* Process image
* @param {Image} image to process
* @param {Integer} format of the image (RGBAFormat)
* @param {Boolean} flipY before writing out the image
* @param {String} mimeType export format
* @return {Integer} Index of the processed texture in the "images" array
*/
processImage( image, format, flipY, mimeType = 'image/png' ) {
if ( image !== null ) {
const writer = this;
const cache = writer.cache;
const json = writer.json;
const options = writer.options;
const pending = writer.pending;
if ( ! cache.images.has( image ) ) cache.images.set( image, {} );
const cachedImages = cache.images.get( image );
const key = mimeType + ':flipY/' + flipY.toString();
if ( cachedImages[ key ] !== undefined ) return cachedImages[ key ];
if ( ! json.images ) json.images = [];
const imageDef = { mimeType: mimeType };
const canvas = getCanvas();
canvas.width = Math.min( image.width, options.maxTextureSize );
canvas.height = Math.min( image.height, options.maxTextureSize );
const ctx = canvas.getContext( '2d' );
if ( flipY === true ) {
ctx.translate( 0, canvas.height );
ctx.scale( 1, - 1 );
}
if ( image.data !== undefined ) { // THREE.DataTexture
if ( format !== RGBAFormat ) {
console.error( 'GLTFExporter: Only RGBAFormat is supported.', format );
}
if ( image.width > options.maxTextureSize || image.height > options.maxTextureSize ) {
console.warn( 'GLTFExporter: Image size is bigger than maxTextureSize', image );
}
const data = new Uint8ClampedArray( image.height * image.width * 4 );
for ( let i = 0; i < data.length; i += 4 ) {
data[ i + 0 ] = image.data[ i + 0 ];
data[ i + 1 ] = image.data[ i + 1 ];
data[ i + 2 ] = image.data[ i + 2 ];
data[ i + 3 ] = image.data[ i + 3 ];
}
ctx.putImageData( new ImageData( data, image.width, image.height ), 0, 0 );
} else {
if ( ( typeof HTMLImageElement !== 'undefined' && image instanceof HTMLImageElement ) ||
( typeof HTMLCanvasElement !== 'undefined' && image instanceof HTMLCanvasElement ) ||
( typeof ImageBitmap !== 'undefined' && image instanceof ImageBitmap ) ||
( typeof OffscreenCanvas !== 'undefined' && image instanceof OffscreenCanvas ) ) {
ctx.drawImage( image, 0, 0, canvas.width, canvas.height );
} else {
throw new Error( 'THREE.GLTFExporter: Invalid image type. Use HTMLImageElement, HTMLCanvasElement, ImageBitmap or OffscreenCanvas.' );
}
}
if ( options.binary === true ) {
pending.push(
getToBlobPromise( canvas, mimeType )
.then( blob => writer.processBufferViewImage( blob ) )
.then( bufferViewIndex => {
imageDef.bufferView = bufferViewIndex;
} )
);
} else {
if ( canvas.toDataURL !== undefined ) {
imageDef.uri = canvas.toDataURL( mimeType );
} else {
pending.push(
getToBlobPromise( canvas, mimeType )
.then( blob => new FileReader().readAsDataURL( blob ) )
.then( dataURL => {
imageDef.uri = dataURL;
} )
);
}
}
const index = json.images.push( imageDef ) - 1;
cachedImages[ key ] = index;
return index;
} else {
throw new Error( 'THREE.GLTFExporter: No valid image data found. Unable to process texture.' );
}
}
/**
* Process sampler
* @param {Texture} map Texture to process
* @return {Integer} Index of the processed texture in the "samplers" array
*/
processSampler( map ) {
const json = this.json;
if ( ! json.samplers ) json.samplers = [];
const samplerDef = {
magFilter: THREE_TO_WEBGL[ map.magFilter ],
minFilter: THREE_TO_WEBGL[ map.minFilter ],
wrapS: THREE_TO_WEBGL[ map.wrapS ],
wrapT: THREE_TO_WEBGL[ map.wrapT ]
};
return json.samplers.push( samplerDef ) - 1;
}
/**
* Process texture
* @param {Texture} map Map to process
* @return {Integer} Index of the processed texture in the "textures" array
*/
processTexture( map ) {
const writer = this;
const options = writer.options;
const cache = this.cache;
const json = this.json;
if ( cache.textures.has( map ) ) return cache.textures.get( map );
if ( ! json.textures ) json.textures = [];
// make non-readable textures (e.g. CompressedTexture) readable by blitting them into a new texture
if ( map instanceof CompressedTexture ) {
map = decompress( map, options.maxTextureSize );
}
let mimeType = map.userData.mimeType;
if ( mimeType === 'image/webp' ) mimeType = 'image/png';
const textureDef = {
sampler: this.processSampler( map ),
source: this.processImage( map.image, map.format, map.flipY, mimeType )
};
if ( map.name ) textureDef.name = map.name;
this._invokeAll( function ( ext ) {
ext.writeTexture && ext.writeTexture( map, textureDef );
} );
const index = json.textures.push( textureDef ) - 1;
cache.textures.set( map, index );
return index;
}
/**
* Process material
* @param {THREE.Material} material Material to process
* @return {Integer|null} Index of the processed material in the "materials" array
*/
processMaterial( material ) {
const cache = this.cache;
const json = this.json;
if ( cache.materials.has( material ) ) return cache.materials.get( material );
if ( material.isShaderMaterial ) {
console.warn( 'GLTFExporter: THREE.ShaderMaterial not supported.' );
return null;
}
if ( ! json.materials ) json.materials = [];
// @QUESTION Should we avoid including any attribute that has the default value?
const materialDef = { pbrMetallicRoughness: {} };
if ( material.isMeshStandardMaterial !== true && material.isMeshBasicMaterial !== true ) {
console.warn( 'GLTFExporter: Use MeshStandardMaterial or MeshBasicMaterial for best results.' );
}
// pbrMetallicRoughness.baseColorFactor
const color = material.color.toArray().concat( [ material.opacity ] );
if ( ! equalArray( color, [ 1, 1, 1, 1 ] ) ) {
materialDef.pbrMetallicRoughness.baseColorFactor = color;
}
if ( material.isMeshStandardMaterial ) {
materialDef.pbrMetallicRoughness.metallicFactor = material.metalness;
materialDef.pbrMetallicRoughness.roughnessFactor = material.roughness;
} else {
materialDef.pbrMetallicRoughness.metallicFactor = 0.5;
materialDef.pbrMetallicRoughness.roughnessFactor = 0.5;
}
// pbrMetallicRoughness.metallicRoughnessTexture
if ( material.metalnessMap || material.roughnessMap ) {
const metalRoughTexture = this.buildMetalRoughTexture( material.metalnessMap, material.roughnessMap );
const metalRoughMapDef = {
index: this.processTexture( metalRoughTexture ),
channel: metalRoughTexture.channel
};
this.applyTextureTransform( metalRoughMapDef, metalRoughTexture );
materialDef.pbrMetallicRoughness.metallicRoughnessTexture = metalRoughMapDef;
}
// pbrMetallicRoughness.baseColorTexture
if ( material.map ) {
const baseColorMapDef = {
index: this.processTexture( material.map ),
texCoord: material.map.channel
};
this.applyTextureTransform( baseColorMapDef, material.map );
materialDef.pbrMetallicRoughness.baseColorTexture = baseColorMapDef;
}
if ( material.emissive ) {
const emissive = material.emissive;
const maxEmissiveComponent = Math.max( emissive.r, emissive.g, emissive.b );
if ( maxEmissiveComponent > 0 ) {
materialDef.emissiveFactor = material.emissive.toArray();
}
// emissiveTexture
if ( material.emissiveMap ) {
const emissiveMapDef = {
index: this.processTexture( material.emissiveMap ),
texCoord: material.emissiveMap.channel
};
this.applyTextureTransform( emissiveMapDef, material.emissiveMap );
materialDef.emissiveTexture = emissiveMapDef;
}
}
// normalTexture
if ( material.normalMap ) {
const normalMapDef = {
index: this.processTexture( material.normalMap ),
texCoord: material.normalMap.channel
};
if ( material.normalScale && material.normalScale.x !== 1 ) {
// glTF normal scale is univariate. Ignore `y`, which may be flipped.
// Context: https://github.com/mrdoob/three.js/issues/11438#issuecomment-507003995
normalMapDef.scale = material.normalScale.x;
}
this.applyTextureTransform( normalMapDef, material.normalMap );
materialDef.normalTexture = normalMapDef;
}
// occlusionTexture
if ( material.aoMap ) {
const occlusionMapDef = {
index: this.processTexture( material.aoMap ),
texCoord: material.aoMap.channel
};
if ( material.aoMapIntensity !== 1.0 ) {
occlusionMapDef.strength = material.aoMapIntensity;
}
this.applyTextureTransform( occlusionMapDef, material.aoMap );
materialDef.occlusionTexture = occlusionMapDef;
}
// alphaMode
if ( material.transparent ) {
materialDef.alphaMode = 'BLEND';
} else {
if ( material.alphaTest > 0.0 ) {
materialDef.alphaMode = 'MASK';
materialDef.alphaCutoff = material.alphaTest;
}
}
// doubleSided
if ( material.side === DoubleSide ) materialDef.doubleSided = true;
if ( material.name !== '' ) materialDef.name = material.name;
this.serializeUserData( material, materialDef );
this._invokeAll( function ( ext ) {
ext.writeMaterial && ext.writeMaterial( material, materialDef );
} );
const index = json.materials.push( materialDef ) - 1;
cache.materials.set( material, index );
return index;
}
/**
* Process mesh
* @param {THREE.Mesh} mesh Mesh to process
* @return {Integer|null} Index of the processed mesh in the "meshes" array
*/
processMesh( mesh ) {
const cache = this.cache;
const json = this.json;
const meshCacheKeyParts = [ mesh.geometry.uuid ];
if ( Array.isArray( mesh.material ) ) {
for ( let i = 0, l = mesh.material.length; i < l; i ++ ) {
meshCacheKeyParts.push( mesh.material[ i ].uuid );
}
} else {
meshCacheKeyParts.push( mesh.material.uuid );
}
const meshCacheKey = meshCacheKeyParts.join( ':' );
if ( cache.meshes.has( meshCacheKey ) ) return cache.meshes.get( meshCacheKey );
const geometry = mesh.geometry;
let mode;
// Use the correct mode
if ( mesh.isLineSegments ) {
mode = WEBGL_CONSTANTS.LINES;
} else if ( mesh.isLineLoop ) {
mode = WEBGL_CONSTANTS.LINE_LOOP;
} else if ( mesh.isLine ) {
mode = WEBGL_CONSTANTS.LINE_STRIP;
} else if ( mesh.isPoints ) {
mode = WEBGL_CONSTANTS.POINTS;
} else {
mode = mesh.material.wireframe ? WEBGL_CONSTANTS.LINES : WEBGL_CONSTANTS.TRIANGLES;
}
const meshDef = {};
const attributes = {};
const primitives = [];
const targets = [];
// Conversion between attributes names in threejs and gltf spec
const nameConversion = {
uv: 'TEXCOORD_0',
uv1: 'TEXCOORD_1',
uv2: 'TEXCOORD_2',
uv3: 'TEXCOORD_3',
color: 'COLOR_0',
skinWeight: 'WEIGHTS_0',
skinIndex: 'JOINTS_0'
};
const originalNormal = geometry.getAttribute( 'normal' );
if ( originalNormal !== undefined && ! this.isNormalizedNormalAttribute( originalNormal ) ) {
console.warn( 'THREE.GLTFExporter: Creating normalized normal attribute from the non-normalized one.' );
geometry.setAttribute( 'normal', this.createNormalizedNormalAttribute( originalNormal ) );
}
// @QUESTION Detect if .vertexColors = true?
// For every attribute create an accessor
let modifiedAttribute = null;
for ( let attributeName in geometry.attributes ) {
// Ignore morph target attributes, which are exported later.
if ( attributeName.slice( 0, 5 ) === 'morph' ) continue;
const attribute = geometry.attributes[ attributeName ];
attributeName = nameConversion[ attributeName ] || attributeName.toUpperCase();
// Prefix all geometry attributes except the ones specifically
// listed in the spec; non-spec attributes are considered custom.
const validVertexAttributes =
/^(POSITION|NORMAL|TANGENT|TEXCOORD_\d+|COLOR_\d+|JOINTS_\d+|WEIGHTS_\d+)$/;
if ( ! validVertexAttributes.test( attributeName ) ) attributeName = '_' + attributeName;
if ( cache.attributes.has( this.getUID( attribute ) ) ) {
attributes[ attributeName ] = cache.attributes.get( this.getUID( attribute ) );
continue;
}
// JOINTS_0 must be UNSIGNED_BYTE or UNSIGNED_SHORT.
modifiedAttribute = null;
const array = attribute.array;
if ( attributeName === 'JOINTS_0' &&
! ( array instanceof Uint16Array ) &&
! ( array instanceof Uint8Array ) ) {
console.warn( 'GLTFExporter: Attribute "skinIndex" converted to type UNSIGNED_SHORT.' );
modifiedAttribute = new BufferAttribute( new Uint16Array( array ), attribute.itemSize, attribute.normalized );
}
const accessor = this.processAccessor( modifiedAttribute || attribute, geometry );
if ( accessor !== null ) {
if ( ! attributeName.startsWith( '_' ) ) {
this.detectMeshQuantization( attributeName, attribute );
}
attributes[ attributeName ] = accessor;
cache.attributes.set( this.getUID( attribute ), accessor );
}
}
if ( originalNormal !== undefined ) geometry.setAttribute( 'normal', originalNormal );
// Skip if no exportable attributes found
if ( Object.keys( attributes ).length === 0 ) return null;
// Morph targets
if ( mesh.morphTargetInfluences !== undefined && mesh.morphTargetInfluences.length > 0 ) {
const weights = [];
const targetNames = [];
const reverseDictionary = {};
if ( mesh.morphTargetDictionary !== undefined ) {
for ( const key in mesh.morphTargetDictionary ) {
reverseDictionary[ mesh.morphTargetDictionary[ key ] ] = key;
}
}
for ( let i = 0; i < mesh.morphTargetInfluences.length; ++ i ) {
const target = {};
let warned = false;
for ( const attributeName in geometry.morphAttributes ) {
// glTF 2.0 morph supports only POSITION/NORMAL/TANGENT.
// Three.js doesn't support TANGENT yet.
if ( attributeName !== 'position' && attributeName !== 'normal' ) {
if ( ! warned ) {
console.warn( 'GLTFExporter: Only POSITION and NORMAL morph are supported.' );
warned = true;
}
continue;
}
const attribute = geometry.morphAttributes[ attributeName ][ i ];
const gltfAttributeName = attributeName.toUpperCase();
// Three.js morph attribute has absolute values while the one of glTF has relative values.
//
// glTF 2.0 Specification:
// https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#morph-targets
const baseAttribute = geometry.attributes[ attributeName ];
if ( cache.attributes.has( this.getUID( attribute, true ) ) ) {
target[ gltfAttributeName ] = cache.attributes.get( this.getUID( attribute, true ) );
continue;
}
// Clones attribute not to override
const relativeAttribute = attribute.clone();
if ( ! geometry.morphTargetsRelative ) {
for ( let j = 0, jl = attribute.count; j < jl; j ++ ) {
for ( let a = 0; a < attribute.itemSize; a ++ ) {
if ( a === 0 ) relativeAttribute.setX( j, attribute.getX( j ) - baseAttribute.getX( j ) );
if ( a === 1 ) relativeAttribute.setY( j, attribute.getY( j ) - baseAttribute.getY( j ) );
if ( a === 2 ) relativeAttribute.setZ( j, attribute.getZ( j ) - baseAttribute.getZ( j ) );
if ( a === 3 ) relativeAttribute.setW( j, attribute.getW( j ) - baseAttribute.getW( j ) );
}
}
}
target[ gltfAttributeName ] = this.processAccessor( relativeAttribute, geometry );
cache.attributes.set( this.getUID( baseAttribute, true ), target[ gltfAttributeName ] );
}
targets.push( target );
weights.push( mesh.morphTargetInfluences[ i ] );
if ( mesh.morphTargetDictionary !== undefined ) targetNames.push( reverseDictionary[ i ] );
}
meshDef.weights = weights;
if ( targetNames.length > 0 ) {
meshDef.extras = {};
meshDef.extras.targetNames = targetNames;
}
}
const isMultiMaterial = Array.isArray( mesh.material );
if ( isMultiMaterial && geometry.groups.length === 0 ) return null;
let didForceIndices = false;
if ( isMultiMaterial && geometry.index === null ) {
const indices = [];
for ( let i = 0, il = geometry.attributes.position.count; i < il; i ++ ) {
indices[ i ] = i;
}
geometry.setIndex( indices );
didForceIndices = true;
}
const materials = isMultiMaterial ? mesh.material : [ mesh.material ];
const groups = isMultiMaterial ? geometry.groups : [ { materialIndex: 0, start: undefined, count: undefined } ];
for ( let i = 0, il = groups.length; i < il; i ++ ) {
const primitive = {
mode: mode,
attributes: attributes,
};
this.serializeUserData( geometry, primitive );
if ( targets.length > 0 ) primitive.targets = targets;
if ( geometry.index !== null ) {
let cacheKey = this.getUID( geometry.index );
if ( groups[ i ].start !== undefined || groups[ i ].count !== undefined ) {
cacheKey += ':' + groups[ i ].start + ':' + groups[ i ].count;
}
if ( cache.attributes.has( cacheKey ) ) {
primitive.indices = cache.attributes.get( cacheKey );
} else {
primitive.indices = this.processAccessor( geometry.index, geometry, groups[ i ].start, groups[ i ].count );
cache.attributes.set( cacheKey, primitive.indices );
}
if ( primitive.indices === null ) delete primitive.indices;
}
const material = this.processMaterial( materials[ groups[ i ].materialIndex ] );
if ( material !== null ) primitive.material = material;
primitives.push( primitive );
}
if ( didForceIndices === true ) {
geometry.setIndex( null );
}
meshDef.primitives = primitives;
if ( ! json.meshes ) json.meshes = [];
this._invokeAll( function ( ext ) {
ext.writeMesh && ext.writeMesh( mesh, meshDef );
} );
const index = json.meshes.push( meshDef ) - 1;
cache.meshes.set( meshCacheKey, index );
return index;
}
/**
* If a vertex attribute with a
* [non-standard data type](https://registry.khronos.org/glTF/specs/2.0/glTF-2.0.html#meshes-overview)
* is used, it is checked whether it is a valid data type according to the
* [KHR_mesh_quantization](https://github.com/KhronosGroup/glTF/blob/main/extensions/2.0/Khronos/KHR_mesh_quantization/README.md)
* extension.
* In this case the extension is automatically added to the list of used extensions.
*
* @param {string} attributeName
* @param {THREE.BufferAttribute} attribute
*/
detectMeshQuantization( attributeName, attribute ) {
if ( this.extensionsUsed[ KHR_MESH_QUANTIZATION ] ) return;
let attrType = undefined;
switch ( attribute.array.constructor ) {
case Int8Array:
attrType = 'byte';
break;
case Uint8Array:
attrType = 'unsigned byte';
break;
case Int16Array:
attrType = 'short';
break;
case Uint16Array:
attrType = 'unsigned short';
break;
default:
return;
}
if ( attribute.normalized ) attrType += ' normalized';
const attrNamePrefix = attributeName.split( '_', 1 )[ 0 ];
if ( KHR_mesh_quantization_ExtraAttrTypes[ attrNamePrefix ] && KHR_mesh_quantization_ExtraAttrTypes[ attrNamePrefix ].includes( attrType ) ) {
this.extensionsUsed[ KHR_MESH_QUANTIZATION ] = true;
this.extensionsRequired[ KHR_MESH_QUANTIZATION ] = true;
}
}
/**
* Process camera
* @param {THREE.Camera} camera Camera to process
* @return {Integer} Index of the processed mesh in the "camera" array
*/
processCamera( camera ) {
const json = this.json;
if ( ! json.cameras ) json.cameras = [];
const isOrtho = camera.isOrthographicCamera;
const cameraDef = {
type: isOrtho ? 'orthographic' : 'perspective'
};
if ( isOrtho ) {
cameraDef.orthographic = {
xmag: camera.right * 2,
ymag: camera.top * 2,
zfar: camera.far <= 0 ? 0.001 : camera.far,
znear: camera.near < 0 ? 0 : camera.near
};
} else {
cameraDef.perspective = {
aspectRatio: camera.aspect,
yfov: MathUtils.degToRad( camera.fov ),
zfar: camera.far <= 0 ? 0.001 : camera.far,
znear: camera.near < 0 ? 0 : camera.near
};
}
// Question: Is saving "type" as name intentional?
if ( camera.name !== '' ) cameraDef.name = camera.type;
return json.cameras.push( cameraDef ) - 1;
}
/**
* Creates glTF animation entry from AnimationClip object.
*
* Status:
* - Only properties listed in PATH_PROPERTIES may be animated.
*
* @param {THREE.AnimationClip} clip
* @param {THREE.Object3D} root
* @return {number|null}
*/
processAnimation( clip, root ) {
const json = this.json;
const nodeMap = this.nodeMap;
if ( ! json.animations ) json.animations = [];
clip = GLTFExporter.Utils.mergeMorphTargetTracks( clip.clone(), root );
const tracks = clip.tracks;
const channels = [];
const samplers = [];
for ( let i = 0; i < tracks.length; ++ i ) {
const track = tracks[ i ];
const trackBinding = PropertyBinding.parseTrackName( track.name );
let trackNode = PropertyBinding.findNode( root, trackBinding.nodeName );
const trackProperty = PATH_PROPERTIES[ trackBinding.propertyName ];
if ( trackBinding.objectName === 'bones' ) {
if ( trackNode.isSkinnedMesh === true ) {
trackNode = trackNode.skeleton.getBoneByName( trackBinding.objectIndex );
} else {
trackNode = undefined;
}
}
if ( ! trackNode || ! trackProperty ) {
console.warn( 'THREE.GLTFExporter: Could not export animation track "%s".', track.name );
return null;
}
const inputItemSize = 1;
let outputItemSize = track.values.length / track.times.length;
if ( trackProperty === PATH_PROPERTIES.morphTargetInfluences ) {
outputItemSize /= trackNode.morphTargetInfluences.length;
}
let interpolation;
// @TODO export CubicInterpolant(InterpolateSmooth) as CUBICSPLINE
// Detecting glTF cubic spline interpolant by checking factory method's special property
// GLTFCubicSplineInterpolant is a custom interpolant and track doesn't return
// valid value from .getInterpolation().
if ( track.createInterpolant.isInterpolantFactoryMethodGLTFCubicSpline === true ) {
interpolation = 'CUBICSPLINE';
// itemSize of CUBICSPLINE keyframe is 9
// (VEC3 * 3: inTangent, splineVertex, and outTangent)
// but needs to be stored as VEC3 so dividing by 3 here.
outputItemSize /= 3;
} else if ( track.getInterpolation() === InterpolateDiscrete ) {
interpolation = 'STEP';
} else {
interpolation = 'LINEAR';
}
samplers.push( {
input: this.processAccessor( new BufferAttribute( track.times, inputItemSize ) ),
output: this.processAccessor( new BufferAttribute( track.values, outputItemSize ) ),
interpolation: interpolation
} );
channels.push( {
sampler: samplers.length - 1,
target: {
node: nodeMap.get( trackNode ),
path: trackProperty
}
} );
}
json.animations.push( {
name: clip.name || 'clip_' + json.animations.length,
samplers: samplers,
channels: channels
} );
return json.animations.length - 1;
}
/**
* @param {THREE.Object3D} object
* @return {number|null}
*/
processSkin( object ) {
const json = this.json;
const nodeMap = this.nodeMap;
const node = json.nodes[ nodeMap.get( object ) ];
const skeleton = object.skeleton;
if ( skeleton === undefined ) return null;
const rootJoint = object.skeleton.bones[ 0 ];
if ( rootJoint === undefined ) return null;
const joints = [];
const inverseBindMatrices = new Float32Array( skeleton.bones.length * 16 );
const temporaryBoneInverse = new Matrix4();
for ( let i = 0; i < skeleton.bones.length; ++ i ) {
joints.push( nodeMap.get( skeleton.bones[ i ] ) );
temporaryBoneInverse.copy( skeleton.boneInverses[ i ] );
temporaryBoneInverse.multiply( object.bindMatrix ).toArray( inverseBindMatrices, i * 16 );
}
if ( json.skins === undefined ) json.skins = [];
json.skins.push( {
inverseBindMatrices: this.processAccessor( new BufferAttribute( inverseBindMatrices, 16 ) ),
joints: joints,
skeleton: nodeMap.get( rootJoint )
} );
const skinIndex = node.skin = json.skins.length - 1;
return skinIndex;
}
/**
* Process Object3D node
* @param {THREE.Object3D} node Object3D to processNode
* @return {Integer} Index of the node in the nodes list
*/
processNode( object ) {
const json = this.json;
const options = this.options;
const nodeMap = this.nodeMap;
if ( ! json.nodes ) json.nodes = [];
const nodeDef = {};
if ( options.trs ) {
const rotation = object.quaternion.toArray();
const position = object.position.toArray();
const scale = object.scale.toArray();
if ( ! equalArray( rotation, [ 0, 0, 0, 1 ] ) ) {
nodeDef.rotation = rotation;
}
if ( ! equalArray( position, [ 0, 0, 0 ] ) ) {
nodeDef.translation = position;
}
if ( ! equalArray( scale, [ 1, 1, 1 ] ) ) {
nodeDef.scale = scale;
}
} else {
if ( object.matrixAutoUpdate ) {
object.updateMatrix();
}
if ( isIdentityMatrix( object.matrix ) === false ) {
nodeDef.matrix = object.matrix.elements;
}
}
// We don't export empty strings name because it represents no-name in Three.js.
if ( object.name !== '' ) nodeDef.name = String( object.name );
this.serializeUserData( object, nodeDef );
if ( object.isMesh || object.isLine || object.isPoints ) {
const meshIndex = this.processMesh( object );
if ( meshIndex !== null ) nodeDef.mesh = meshIndex;
} else if ( object.isCamera ) {
nodeDef.camera = this.processCamera( object );
}
if ( object.isSkinnedMesh ) this.skins.push( object );
if ( object.children.length > 0 ) {
const children = [];
for ( let i = 0, l = object.children.length; i < l; i ++ ) {
const child = object.children[ i ];
if ( child.visible || options.onlyVisible === false ) {
const nodeIndex = this.processNode( child );
if ( nodeIndex !== null ) children.push( nodeIndex );
}
}
if ( children.length > 0 ) nodeDef.children = children;
}
this._invokeAll( function ( ext ) {
ext.writeNode && ext.writeNode( object, nodeDef );
} );
const nodeIndex = json.nodes.push( nodeDef ) - 1;
nodeMap.set( object, nodeIndex );
return nodeIndex;
}
/**
* Process Scene
* @param {Scene} node Scene to process
*/
processScene( scene ) {
const json = this.json;
const options = this.options;
if ( ! json.scenes ) {
json.scenes = [];
json.scene = 0;
}
const sceneDef = {};
if ( scene.name !== '' ) sceneDef.name = scene.name;
json.scenes.push( sceneDef );
const nodes = [];
for ( let i = 0, l = scene.children.length; i < l; i ++ ) {
const child = scene.children[ i ];
if ( child.visible || options.onlyVisible === false ) {
const nodeIndex = this.processNode( child );
if ( nodeIndex !== null ) nodes.push( nodeIndex );
}
}
if ( nodes.length > 0 ) sceneDef.nodes = nodes;
this.serializeUserData( scene, sceneDef );
}
/**
* Creates a Scene to hold a list of objects and parse it
* @param {Array} objects List of objects to process
*/
processObjects( objects ) {
const scene = new Scene();
scene.name = 'AuxScene';
for ( let i = 0; i < objects.length; i ++ ) {
// We push directly to children instead of calling `add` to prevent
// modify the .parent and break its original scene and hierarchy
scene.children.push( objects[ i ] );
}
this.processScene( scene );
}
/**
* @param {THREE.Object3D|Array<THREE.Object3D>} input
*/
processInput( input ) {
const options = this.options;
input = input instanceof Array ? input : [ input ];
this._invokeAll( function ( ext ) {
ext.beforeParse && ext.beforeParse( input );
} );
const objectsWithoutScene = [];
for ( let i = 0; i < input.length; i ++ ) {
if ( input[ i ] instanceof Scene ) {
this.processScene( input[ i ] );
} else {
objectsWithoutScene.push( input[ i ] );
}
}
if ( objectsWithoutScene.length > 0 ) this.processObjects( objectsWithoutScene );
for ( let i = 0; i < this.skins.length; ++ i ) {
this.processSkin( this.skins[ i ] );
}
for ( let i = 0; i < options.animations.length; ++ i ) {
this.processAnimation( options.animations[ i ], input[ 0 ] );
}
this._invokeAll( function ( ext ) {
ext.afterParse && ext.afterParse( input );
} );
}
_invokeAll( func ) {
for ( let i = 0, il = this.plugins.length; i < il; i ++ ) {
func( this.plugins[ i ] );
}
}
}
/**
* Punctual Lights Extension
*
* Specification: https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Khronos/KHR_lights_punctual
*/
class GLTFLightExtension {
constructor( writer ) {
this.writer = writer;
this.name = 'KHR_lights_punctual';
}
writeNode( light, nodeDef ) {
if ( ! light.isLight ) return;
if ( ! light.isDirectionalLight && ! light.isPointLight && ! light.isSpotLight ) {
console.warn( 'THREE.GLTFExporter: Only directional, point, and spot lights are supported.', light );
return;
}
const writer = this.writer;
const json = writer.json;
const extensionsUsed = writer.extensionsUsed;
const lightDef = {};
if ( light.name ) lightDef.name = light.name;
lightDef.color = light.color.toArray();
lightDef.intensity = light.intensity;
if ( light.isDirectionalLight ) {
lightDef.type = 'directional';
} else if ( light.isPointLight ) {
lightDef.type = 'point';
if ( light.distance > 0 ) lightDef.range = light.distance;
} else if ( light.isSpotLight ) {
lightDef.type = 'spot';
if ( light.distance > 0 ) lightDef.range = light.distance;
lightDef.spot = {};
lightDef.spot.innerConeAngle = ( 1.0 - light.penumbra ) * light.angle;
lightDef.spot.outerConeAngle = light.angle;
}
if ( light.decay !== undefined && light.decay !== 2 ) {
console.warn( 'THREE.GLTFExporter: Light decay may be lost. glTF is physically-based, '
+ 'and expects light.decay=2.' );
}
if ( light.target
&& ( light.target.parent !== light
|| light.target.position.x !== 0
|| light.target.position.y !== 0
|| light.target.position.z !== - 1 ) ) {
console.warn( 'THREE.GLTFExporter: Light direction may be lost. For best results, '
+ 'make light.target a child of the light with position 0,0,-1.' );
}
if ( ! extensionsUsed[ this.name ] ) {
json.extensions = json.extensions || {};
json.extensions[ this.name ] = { lights: [] };
extensionsUsed[ this.name ] = true;
}
const lights = json.extensions[ this.name ].lights;
lights.push( lightDef );
nodeDef.extensions = nodeDef.extensions || {};
nodeDef.extensions[ this.name ] = { light: lights.length - 1 };
}
}
/**
* Unlit Materials Extension
*
* Specification: https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Khronos/KHR_materials_unlit
*/
class GLTFMaterialsUnlitExtension {
constructor( writer ) {
this.writer = writer;
this.name = 'KHR_materials_unlit';
}
writeMaterial( material, materialDef ) {
if ( ! material.isMeshBasicMaterial ) return;
const writer = this.writer;
const extensionsUsed = writer.extensionsUsed;
materialDef.extensions = materialDef.extensions || {};
materialDef.extensions[ this.name ] = {};
extensionsUsed[ this.name ] = true;
materialDef.pbrMetallicRoughness.metallicFactor = 0.0;
materialDef.pbrMetallicRoughness.roughnessFactor = 0.9;
}
}
/**
* Clearcoat Materials Extension
*
* Specification: https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Khronos/KHR_materials_clearcoat
*/
class GLTFMaterialsClearcoatExtension {
constructor( writer ) {
this.writer = writer;
this.name = 'KHR_materials_clearcoat';
}
writeMaterial( material, materialDef ) {
if ( ! material.isMeshPhysicalMaterial || material.clearcoat === 0 ) return;
const writer = this.writer;
const extensionsUsed = writer.extensionsUsed;
const extensionDef = {};
extensionDef.clearcoatFactor = material.clearcoat;
if ( material.clearcoatMap ) {
const clearcoatMapDef = {
index: writer.processTexture( material.clearcoatMap ),
texCoord: material.clearcoatMap.channel
};
writer.applyTextureTransform( clearcoatMapDef, material.clearcoatMap );
extensionDef.clearcoatTexture = clearcoatMapDef;
}
extensionDef.clearcoatRoughnessFactor = material.clearcoatRoughness;
if ( material.clearcoatRoughnessMap ) {
const clearcoatRoughnessMapDef = {
index: writer.processTexture( material.clearcoatRoughnessMap ),
texCoord: material.clearcoatRoughnessMap.channel
};
writer.applyTextureTransform( clearcoatRoughnessMapDef, material.clearcoatRoughnessMap );
extensionDef.clearcoatRoughnessTexture = clearcoatRoughnessMapDef;
}
if ( material.clearcoatNormalMap ) {
const clearcoatNormalMapDef = {
index: writer.processTexture( material.clearcoatNormalMap ),
texCoord: material.clearcoatNormalMap.channel
};
if ( material.clearcoatNormalScale.x !== 1 ) clearcoatNormalMapDef.scale = material.clearcoatNormalScale.x;
writer.applyTextureTransform( clearcoatNormalMapDef, material.clearcoatNormalMap );
extensionDef.clearcoatNormalTexture = clearcoatNormalMapDef;
}
materialDef.extensions = materialDef.extensions || {};
materialDef.extensions[ this.name ] = extensionDef;
extensionsUsed[ this.name ] = true;
}
}
/**
* Materials dispersion Extension
*
* Specification: https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Khronos/KHR_materials_dispersion
*/
class GLTFMaterialsDispersionExtension {
constructor( writer ) {
this.writer = writer;
this.name = 'KHR_materials_dispersion';
}
writeMaterial( material, materialDef ) {
if ( ! material.isMeshPhysicalMaterial || material.dispersion === 0 ) return;
const writer = this.writer;
const extensionsUsed = writer.extensionsUsed;
const extensionDef = {};
extensionDef.dispersion = material.dispersion;
materialDef.extensions = materialDef.extensions || {};
materialDef.extensions[ this.name ] = extensionDef;
extensionsUsed[ this.name ] = true;
}
}
/**
* Iridescence Materials Extension
*
* Specification: https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Khronos/KHR_materials_iridescence
*/
class GLTFMaterialsIridescenceExtension {
constructor( writer ) {
this.writer = writer;
this.name = 'KHR_materials_iridescence';
}
writeMaterial( material, materialDef ) {
if ( ! material.isMeshPhysicalMaterial || material.iridescence === 0 ) return;
const writer = this.writer;
const extensionsUsed = writer.extensionsUsed;
const extensionDef = {};
extensionDef.iridescenceFactor = material.iridescence;
if ( material.iridescenceMap ) {
const iridescenceMapDef = {
index: writer.processTexture( material.iridescenceMap ),
texCoord: material.iridescenceMap.channel
};
writer.applyTextureTransform( iridescenceMapDef, material.iridescenceMap );
extensionDef.iridescenceTexture = iridescenceMapDef;
}
extensionDef.iridescenceIor = material.iridescenceIOR;
extensionDef.iridescenceThicknessMinimum = material.iridescenceThicknessRange[ 0 ];
extensionDef.iridescenceThicknessMaximum = material.iridescenceThicknessRange[ 1 ];
if ( material.iridescenceThicknessMap ) {
const iridescenceThicknessMapDef = {
index: writer.processTexture( material.iridescenceThicknessMap ),
texCoord: material.iridescenceThicknessMap.channel
};
writer.applyTextureTransform( iridescenceThicknessMapDef, material.iridescenceThicknessMap );
extensionDef.iridescenceThicknessTexture = iridescenceThicknessMapDef;
}
materialDef.extensions = materialDef.extensions || {};
materialDef.extensions[ this.name ] = extensionDef;
extensionsUsed[ this.name ] = true;
}
}
/**
* Transmission Materials Extension
*
* Specification: https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Khronos/KHR_materials_transmission
*/
class GLTFMaterialsTransmissionExtension {
constructor( writer ) {
this.writer = writer;
this.name = 'KHR_materials_transmission';
}
writeMaterial( material, materialDef ) {
if ( ! material.isMeshPhysicalMaterial || material.transmission === 0 ) return;
const writer = this.writer;
const extensionsUsed = writer.extensionsUsed;
const extensionDef = {};
extensionDef.transmissionFactor = material.transmission;
if ( material.transmissionMap ) {
const transmissionMapDef = {
index: writer.processTexture( material.transmissionMap ),
texCoord: material.transmissionMap.channel
};
writer.applyTextureTransform( transmissionMapDef, material.transmissionMap );
extensionDef.transmissionTexture = transmissionMapDef;
}
materialDef.extensions = materialDef.extensions || {};
materialDef.extensions[ this.name ] = extensionDef;
extensionsUsed[ this.name ] = true;
}
}
/**
* Materials Volume Extension
*
* Specification: https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Khronos/KHR_materials_volume
*/
class GLTFMaterialsVolumeExtension {
constructor( writer ) {
this.writer = writer;
this.name = 'KHR_materials_volume';
}
writeMaterial( material, materialDef ) {
if ( ! material.isMeshPhysicalMaterial || material.transmission === 0 ) return;
const writer = this.writer;
const extensionsUsed = writer.extensionsUsed;
const extensionDef = {};
extensionDef.thicknessFactor = material.thickness;
if ( material.thicknessMap ) {
const thicknessMapDef = {
index: writer.processTexture( material.thicknessMap ),
texCoord: material.thicknessMap.channel
};
writer.applyTextureTransform( thicknessMapDef, material.thicknessMap );
extensionDef.thicknessTexture = thicknessMapDef;
}
extensionDef.attenuationDistance = material.attenuationDistance;
extensionDef.attenuationColor = material.attenuationColor.toArray();
materialDef.extensions = materialDef.extensions || {};
materialDef.extensions[ this.name ] = extensionDef;
extensionsUsed[ this.name ] = true;
}
}
/**
* Materials ior Extension
*
* Specification: https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Khronos/KHR_materials_ior
*/
class GLTFMaterialsIorExtension {
constructor( writer ) {
this.writer = writer;
this.name = 'KHR_materials_ior';
}
writeMaterial( material, materialDef ) {
if ( ! material.isMeshPhysicalMaterial || material.ior === 1.5 ) return;
const writer = this.writer;
const extensionsUsed = writer.extensionsUsed;
const extensionDef = {};
extensionDef.ior = material.ior;
materialDef.extensions = materialDef.extensions || {};
materialDef.extensions[ this.name ] = extensionDef;
extensionsUsed[ this.name ] = true;
}
}
/**
* Materials specular Extension
*
* Specification: https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Khronos/KHR_materials_specular
*/
class GLTFMaterialsSpecularExtension {
constructor( writer ) {
this.writer = writer;
this.name = 'KHR_materials_specular';
}
writeMaterial( material, materialDef ) {
if ( ! material.isMeshPhysicalMaterial || ( material.specularIntensity === 1.0 &&
material.specularColor.equals( DEFAULT_SPECULAR_COLOR ) &&
! material.specularIntensityMap && ! material.specularColorMap ) ) return;
const writer = this.writer;
const extensionsUsed = writer.extensionsUsed;
const extensionDef = {};
if ( material.specularIntensityMap ) {
const specularIntensityMapDef = {
index: writer.processTexture( material.specularIntensityMap ),
texCoord: material.specularIntensityMap.channel
};
writer.applyTextureTransform( specularIntensityMapDef, material.specularIntensityMap );
extensionDef.specularTexture = specularIntensityMapDef;
}
if ( material.specularColorMap ) {
const specularColorMapDef = {
index: writer.processTexture( material.specularColorMap ),
texCoord: material.specularColorMap.channel
};
writer.applyTextureTransform( specularColorMapDef, material.specularColorMap );
extensionDef.specularColorTexture = specularColorMapDef;
}
extensionDef.specularFactor = material.specularIntensity;
extensionDef.specularColorFactor = material.specularColor.toArray();
materialDef.extensions = materialDef.extensions || {};
materialDef.extensions[ this.name ] = extensionDef;
extensionsUsed[ this.name ] = true;
}
}
/**
* Sheen Materials Extension
*
* Specification: https://github.com/KhronosGroup/glTF/tree/main/extensions/2.0/Khronos/KHR_materials_sheen
*/
class GLTFMaterialsSheenExtension {
constructor( writer ) {
this.writer = writer;
this.name = 'KHR_materials_sheen';
}
writeMaterial( material, materialDef ) {
if ( ! material.isMeshPhysicalMaterial || material.sheen == 0.0 ) return;
const writer = this.writer;
const extensionsUsed = writer.extensionsUsed;
const extensionDef = {};
if ( material.sheenRoughnessMap ) {
const sheenRoughnessMapDef = {
index: writer.processTexture( material.sheenRoughnessMap ),
texCoord: material.sheenRoughnessMap.channel
};
writer.applyTextureTransform( sheenRoughnessMapDef, material.sheenRoughnessMap );
extensionDef.sheenRoughnessTexture = sheenRoughnessMapDef;
}
if ( material.sheenColorMap ) {
const sheenColorMapDef = {
index: writer.processTexture( material.sheenColorMap ),
texCoord: material.sheenColorMap.channel
};
writer.applyTextureTransform( sheenColorMapDef, material.sheenColorMap );
extensionDef.sheenColorTexture = sheenColorMapDef;
}
extensionDef.sheenRoughnessFactor = material.sheenRoughness;
extensionDef.sheenColorFactor = material.sheenColor.toArray();
materialDef.extensions = materialDef.extensions || {};
materialDef.extensions[ this.name ] = extensionDef;
extensionsUsed[ this.name ] = true;
}
}
/**
* Anisotropy Materials Extension
*
* Specification: https://github.com/KhronosGroup/glTF/tree/main/extensions/2.0/Khronos/KHR_materials_anisotropy
*/
class GLTFMaterialsAnisotropyExtension {
constructor( writer ) {
this.writer = writer;
this.name = 'KHR_materials_anisotropy';
}
writeMaterial( material, materialDef ) {
if ( ! material.isMeshPhysicalMaterial || material.anisotropy == 0.0 ) return;
const writer = this.writer;
const extensionsUsed = writer.extensionsUsed;
const extensionDef = {};
if ( material.anisotropyMap ) {
const anisotropyMapDef = { index: writer.processTexture( material.anisotropyMap ) };
writer.applyTextureTransform( anisotropyMapDef, material.anisotropyMap );
extensionDef.anisotropyTexture = anisotropyMapDef;
}
extensionDef.anisotropyStrength = material.anisotropy;
extensionDef.anisotropyRotation = material.anisotropyRotation;
materialDef.extensions = materialDef.extensions || {};
materialDef.extensions[ this.name ] = extensionDef;
extensionsUsed[ this.name ] = true;
}
}
/**
* Materials Emissive Strength Extension
*
* Specification: https://github.com/KhronosGroup/glTF/blob/5768b3ce0ef32bc39cdf1bef10b948586635ead3/extensions/2.0/Khronos/KHR_materials_emissive_strength/README.md
*/
class GLTFMaterialsEmissiveStrengthExtension {
constructor( writer ) {
this.writer = writer;
this.name = 'KHR_materials_emissive_strength';
}
writeMaterial( material, materialDef ) {
if ( ! material.isMeshStandardMaterial || material.emissiveIntensity === 1.0 ) return;
const writer = this.writer;
const extensionsUsed = writer.extensionsUsed;
const extensionDef = {};
extensionDef.emissiveStrength = material.emissiveIntensity;
materialDef.extensions = materialDef.extensions || {};
materialDef.extensions[ this.name ] = extensionDef;
extensionsUsed[ this.name ] = true;
}
}
/**
* Materials bump Extension
*
* Specification: https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Khronos/EXT_materials_bump
*/
class GLTFMaterialsBumpExtension {
constructor( writer ) {
this.writer = writer;
this.name = 'EXT_materials_bump';
}
writeMaterial( material, materialDef ) {
if ( ! material.isMeshStandardMaterial || (
material.bumpScale === 1 &&
! material.bumpMap ) ) return;
const writer = this.writer;
const extensionsUsed = writer.extensionsUsed;
const extensionDef = {};
if ( material.bumpMap ) {
const bumpMapDef = {
index: writer.processTexture( material.bumpMap ),
texCoord: material.bumpMap.channel
};
writer.applyTextureTransform( bumpMapDef, material.bumpMap );
extensionDef.bumpTexture = bumpMapDef;
}
extensionDef.bumpFactor = material.bumpScale;
materialDef.extensions = materialDef.extensions || {};
materialDef.extensions[ this.name ] = extensionDef;
extensionsUsed[ this.name ] = true;
}
}
/**
* GPU Instancing Extension
*
* Specification: https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Vendor/EXT_mesh_gpu_instancing
*/
class GLTFMeshGpuInstancing {
constructor( writer ) {
this.writer = writer;
this.name = 'EXT_mesh_gpu_instancing';
}
writeNode( object, nodeDef ) {
if ( ! object.isInstancedMesh ) return;
const writer = this.writer;
const mesh = object;
const translationAttr = new Float32Array( mesh.count * 3 );
const rotationAttr = new Float32Array( mesh.count * 4 );
const scaleAttr = new Float32Array( mesh.count * 3 );
const matrix = new Matrix4();
const position = new Vector3();
const quaternion = new Quaternion();
const scale = new Vector3();
for ( let i = 0; i < mesh.count; i ++ ) {
mesh.getMatrixAt( i, matrix );
matrix.decompose( position, quaternion, scale );
position.toArray( translationAttr, i * 3 );
quaternion.toArray( rotationAttr, i * 4 );
scale.toArray( scaleAttr, i * 3 );
}
const attributes = {
TRANSLATION: writer.processAccessor( new BufferAttribute( translationAttr, 3 ) ),
ROTATION: writer.processAccessor( new BufferAttribute( rotationAttr, 4 ) ),
SCALE: writer.processAccessor( new BufferAttribute( scaleAttr, 3 ) ),
};
if ( mesh.instanceColor )
attributes._COLOR_0 = writer.processAccessor( mesh.instanceColor );
nodeDef.extensions = nodeDef.extensions || {};
nodeDef.extensions[ this.name ] = { attributes };
writer.extensionsUsed[ this.name ] = true;
writer.extensionsRequired[ this.name ] = true;
}
}
/**
* Static utility functions
*/
GLTFExporter.Utils = {
insertKeyframe: function ( track, time ) {
const tolerance = 0.001; // 1ms
const valueSize = track.getValueSize();
const times = new track.TimeBufferType( track.times.length + 1 );
const values = new track.ValueBufferType( track.values.length + valueSize );
const interpolant = track.createInterpolant( new track.ValueBufferType( valueSize ) );
let index;
if ( track.times.length === 0 ) {
times[ 0 ] = time;
for ( let i = 0; i < valueSize; i ++ ) {
values[ i ] = 0;
}
index = 0;
} else if ( time < track.times[ 0 ] ) {
if ( Math.abs( track.times[ 0 ] - time ) < tolerance ) return 0;
times[ 0 ] = time;
times.set( track.times, 1 );
values.set( interpolant.evaluate( time ), 0 );
values.set( track.values, valueSize );
index = 0;
} else if ( time > track.times[ track.times.length - 1 ] ) {
if ( Math.abs( track.times[ track.times.length - 1 ] - time ) < tolerance ) {
return track.times.length - 1;
}
times[ times.length - 1 ] = time;
times.set( track.times, 0 );
values.set( track.values, 0 );
values.set( interpolant.evaluate( time ), track.values.length );
index = times.length - 1;
} else {
for ( let i = 0; i < track.times.length; i ++ ) {
if ( Math.abs( track.times[ i ] - time ) < tolerance ) return i;
if ( track.times[ i ] < time && track.times[ i + 1 ] > time ) {
times.set( track.times.slice( 0, i + 1 ), 0 );
times[ i + 1 ] = time;
times.set( track.times.slice( i + 1 ), i + 2 );
values.set( track.values.slice( 0, ( i + 1 ) * valueSize ), 0 );
values.set( interpolant.evaluate( time ), ( i + 1 ) * valueSize );
values.set( track.values.slice( ( i + 1 ) * valueSize ), ( i + 2 ) * valueSize );
index = i + 1;
break;
}
}
}
track.times = times;
track.values = values;
return index;
},
mergeMorphTargetTracks: function ( clip, root ) {
const tracks = [];
const mergedTracks = {};
const sourceTracks = clip.tracks;
for ( let i = 0; i < sourceTracks.length; ++ i ) {
let sourceTrack = sourceTracks[ i ];
const sourceTrackBinding = PropertyBinding.parseTrackName( sourceTrack.name );
const sourceTrackNode = PropertyBinding.findNode( root, sourceTrackBinding.nodeName );
if ( sourceTrackBinding.propertyName !== 'morphTargetInfluences' || sourceTrackBinding.propertyIndex === undefined ) {
// Tracks that don't affect morph targets, or that affect all morph targets together, can be left as-is.
tracks.push( sourceTrack );
continue;
}
if ( sourceTrack.createInterpolant !== sourceTrack.InterpolantFactoryMethodDiscrete
&& sourceTrack.createInterpolant !== sourceTrack.InterpolantFactoryMethodLinear ) {
if ( sourceTrack.createInterpolant.isInterpolantFactoryMethodGLTFCubicSpline ) {
// This should never happen, because glTF morph target animations
// affect all targets already.
throw new Error( 'THREE.GLTFExporter: Cannot merge tracks with glTF CUBICSPLINE interpolation.' );
}
console.warn( 'THREE.GLTFExporter: Morph target interpolation mode not yet supported. Using LINEAR instead.' );
sourceTrack = sourceTrack.clone();
sourceTrack.setInterpolation( InterpolateLinear );
}
const targetCount = sourceTrackNode.morphTargetInfluences.length;
const targetIndex = sourceTrackNode.morphTargetDictionary[ sourceTrackBinding.propertyIndex ];
if ( targetIndex === undefined ) {
throw new Error( 'THREE.GLTFExporter: Morph target name not found: ' + sourceTrackBinding.propertyIndex );
}
let mergedTrack;
// If this is the first time we've seen this object, create a new
// track to store merged keyframe data for each morph target.
if ( mergedTracks[ sourceTrackNode.uuid ] === undefined ) {
mergedTrack = sourceTrack.clone();
const values = new mergedTrack.ValueBufferType( targetCount * mergedTrack.times.length );
for ( let j = 0; j < mergedTrack.times.length; j ++ ) {
values[ j * targetCount + targetIndex ] = mergedTrack.values[ j ];
}
// We need to take into consideration the intended target node
// of our original un-merged morphTarget animation.
mergedTrack.name = ( sourceTrackBinding.nodeName || '' ) + '.morphTargetInfluences';
mergedTrack.values = values;
mergedTracks[ sourceTrackNode.uuid ] = mergedTrack;
tracks.push( mergedTrack );
continue;
}
const sourceInterpolant = sourceTrack.createInterpolant( new sourceTrack.ValueBufferType( 1 ) );
mergedTrack = mergedTracks[ sourceTrackNode.uuid ];
// For every existing keyframe of the merged track, write a (possibly
// interpolated) value from the source track.
for ( let j = 0; j < mergedTrack.times.length; j ++ ) {
mergedTrack.values[ j * targetCount + targetIndex ] = sourceInterpolant.evaluate( mergedTrack.times[ j ] );
}
// For every existing keyframe of the source track, write a (possibly
// new) keyframe to the merged track. Values from the previous loop may
// be written again, but keyframes are de-duplicated.
for ( let j = 0; j < sourceTrack.times.length; j ++ ) {
const keyframeIndex = this.insertKeyframe( mergedTrack, sourceTrack.times[ j ] );
mergedTrack.values[ keyframeIndex * targetCount + targetIndex ] = sourceTrack.values[ j ];
}
}
clip.tracks = tracks;
return clip;
}
};
export { GLTFExporter };