node-ejs-renderer/node_modules/three/examples/jsm/csm/CSM.js
2024-06-09 13:55:01 -04:00

385 lines
9.1 KiB
JavaScript

import {
Vector2,
Vector3,
DirectionalLight,
MathUtils,
ShaderChunk,
Matrix4,
Box3
} from 'three';
import { CSMFrustum } from './CSMFrustum.js';
import { CSMShader } from './CSMShader.js';
const _cameraToLightMatrix = new Matrix4();
const _lightSpaceFrustum = new CSMFrustum();
const _center = new Vector3();
const _bbox = new Box3();
const _uniformArray = [];
const _logArray = [];
const _lightOrientationMatrix = new Matrix4();
const _lightOrientationMatrixInverse = new Matrix4();
const _up = new Vector3( 0, 1, 0 );
export class CSM {
constructor( data ) {
this.camera = data.camera;
this.parent = data.parent;
this.cascades = data.cascades || 3;
this.maxFar = data.maxFar || 100000;
this.mode = data.mode || 'practical';
this.shadowMapSize = data.shadowMapSize || 2048;
this.shadowBias = data.shadowBias || 0.000001;
this.lightDirection = data.lightDirection || new Vector3( 1, - 1, 1 ).normalize();
this.lightIntensity = data.lightIntensity || 3;
this.lightNear = data.lightNear || 1;
this.lightFar = data.lightFar || 2000;
this.lightMargin = data.lightMargin || 200;
this.customSplitsCallback = data.customSplitsCallback;
this.fade = false;
this.mainFrustum = new CSMFrustum();
this.frustums = [];
this.breaks = [];
this.lights = [];
this.shaders = new Map();
this.createLights();
this.updateFrustums();
this.injectInclude();
}
createLights() {
for ( let i = 0; i < this.cascades; i ++ ) {
const light = new DirectionalLight( 0xffffff, this.lightIntensity );
light.castShadow = true;
light.shadow.mapSize.width = this.shadowMapSize;
light.shadow.mapSize.height = this.shadowMapSize;
light.shadow.camera.near = this.lightNear;
light.shadow.camera.far = this.lightFar;
light.shadow.bias = this.shadowBias;
this.parent.add( light );
this.parent.add( light.target );
this.lights.push( light );
}
}
initCascades() {
const camera = this.camera;
camera.updateProjectionMatrix();
this.mainFrustum.setFromProjectionMatrix( camera.projectionMatrix, this.maxFar );
this.mainFrustum.split( this.breaks, this.frustums );
}
updateShadowBounds() {
const frustums = this.frustums;
for ( let i = 0; i < frustums.length; i ++ ) {
const light = this.lights[ i ];
const shadowCam = light.shadow.camera;
const frustum = this.frustums[ i ];
// Get the two points that represent that furthest points on the frustum assuming
// that's either the diagonal across the far plane or the diagonal across the whole
// frustum itself.
const nearVerts = frustum.vertices.near;
const farVerts = frustum.vertices.far;
const point1 = farVerts[ 0 ];
let point2;
if ( point1.distanceTo( farVerts[ 2 ] ) > point1.distanceTo( nearVerts[ 2 ] ) ) {
point2 = farVerts[ 2 ];
} else {
point2 = nearVerts[ 2 ];
}
let squaredBBWidth = point1.distanceTo( point2 );
if ( this.fade ) {
// expand the shadow extents by the fade margin if fade is enabled.
const camera = this.camera;
const far = Math.max( camera.far, this.maxFar );
const linearDepth = frustum.vertices.far[ 0 ].z / ( far - camera.near );
const margin = 0.25 * Math.pow( linearDepth, 2.0 ) * ( far - camera.near );
squaredBBWidth += margin;
}
shadowCam.left = - squaredBBWidth / 2;
shadowCam.right = squaredBBWidth / 2;
shadowCam.top = squaredBBWidth / 2;
shadowCam.bottom = - squaredBBWidth / 2;
shadowCam.updateProjectionMatrix();
}
}
getBreaks() {
const camera = this.camera;
const far = Math.min( camera.far, this.maxFar );
this.breaks.length = 0;
switch ( this.mode ) {
case 'uniform':
uniformSplit( this.cascades, camera.near, far, this.breaks );
break;
case 'logarithmic':
logarithmicSplit( this.cascades, camera.near, far, this.breaks );
break;
case 'practical':
practicalSplit( this.cascades, camera.near, far, 0.5, this.breaks );
break;
case 'custom':
if ( this.customSplitsCallback === undefined ) console.error( 'CSM: Custom split scheme callback not defined.' );
this.customSplitsCallback( this.cascades, camera.near, far, this.breaks );
break;
}
function uniformSplit( amount, near, far, target ) {
for ( let i = 1; i < amount; i ++ ) {
target.push( ( near + ( far - near ) * i / amount ) / far );
}
target.push( 1 );
}
function logarithmicSplit( amount, near, far, target ) {
for ( let i = 1; i < amount; i ++ ) {
target.push( ( near * ( far / near ) ** ( i / amount ) ) / far );
}
target.push( 1 );
}
function practicalSplit( amount, near, far, lambda, target ) {
_uniformArray.length = 0;
_logArray.length = 0;
logarithmicSplit( amount, near, far, _logArray );
uniformSplit( amount, near, far, _uniformArray );
for ( let i = 1; i < amount; i ++ ) {
target.push( MathUtils.lerp( _uniformArray[ i - 1 ], _logArray[ i - 1 ], lambda ) );
}
target.push( 1 );
}
}
update() {
const camera = this.camera;
const frustums = this.frustums;
// for each frustum we need to find its min-max box aligned with the light orientation
// the position in _lightOrientationMatrix does not matter, as we transform there and back
_lightOrientationMatrix.lookAt( new Vector3(), this.lightDirection, _up );
_lightOrientationMatrixInverse.copy( _lightOrientationMatrix ).invert();
for ( let i = 0; i < frustums.length; i ++ ) {
const light = this.lights[ i ];
const shadowCam = light.shadow.camera;
const texelWidth = ( shadowCam.right - shadowCam.left ) / this.shadowMapSize;
const texelHeight = ( shadowCam.top - shadowCam.bottom ) / this.shadowMapSize;
_cameraToLightMatrix.multiplyMatrices( _lightOrientationMatrixInverse, camera.matrixWorld );
frustums[ i ].toSpace( _cameraToLightMatrix, _lightSpaceFrustum );
const nearVerts = _lightSpaceFrustum.vertices.near;
const farVerts = _lightSpaceFrustum.vertices.far;
_bbox.makeEmpty();
for ( let j = 0; j < 4; j ++ ) {
_bbox.expandByPoint( nearVerts[ j ] );
_bbox.expandByPoint( farVerts[ j ] );
}
_bbox.getCenter( _center );
_center.z = _bbox.max.z + this.lightMargin;
_center.x = Math.floor( _center.x / texelWidth ) * texelWidth;
_center.y = Math.floor( _center.y / texelHeight ) * texelHeight;
_center.applyMatrix4( _lightOrientationMatrix );
light.position.copy( _center );
light.target.position.copy( _center );
light.target.position.x += this.lightDirection.x;
light.target.position.y += this.lightDirection.y;
light.target.position.z += this.lightDirection.z;
}
}
injectInclude() {
ShaderChunk.lights_fragment_begin = CSMShader.lights_fragment_begin;
ShaderChunk.lights_pars_begin = CSMShader.lights_pars_begin;
}
setupMaterial( material ) {
material.defines = material.defines || {};
material.defines.USE_CSM = 1;
material.defines.CSM_CASCADES = this.cascades;
if ( this.fade ) {
material.defines.CSM_FADE = '';
}
const breaksVec2 = [];
const scope = this;
const shaders = this.shaders;
material.onBeforeCompile = function ( shader ) {
const far = Math.min( scope.camera.far, scope.maxFar );
scope.getExtendedBreaks( breaksVec2 );
shader.uniforms.CSM_cascades = { value: breaksVec2 };
shader.uniforms.cameraNear = { value: scope.camera.near };
shader.uniforms.shadowFar = { value: far };
shaders.set( material, shader );
};
shaders.set( material, null );
}
updateUniforms() {
const far = Math.min( this.camera.far, this.maxFar );
const shaders = this.shaders;
shaders.forEach( function ( shader, material ) {
if ( shader !== null ) {
const uniforms = shader.uniforms;
this.getExtendedBreaks( uniforms.CSM_cascades.value );
uniforms.cameraNear.value = this.camera.near;
uniforms.shadowFar.value = far;
}
if ( ! this.fade && 'CSM_FADE' in material.defines ) {
delete material.defines.CSM_FADE;
material.needsUpdate = true;
} else if ( this.fade && ! ( 'CSM_FADE' in material.defines ) ) {
material.defines.CSM_FADE = '';
material.needsUpdate = true;
}
}, this );
}
getExtendedBreaks( target ) {
while ( target.length < this.breaks.length ) {
target.push( new Vector2() );
}
target.length = this.breaks.length;
for ( let i = 0; i < this.cascades; i ++ ) {
const amount = this.breaks[ i ];
const prev = this.breaks[ i - 1 ] || 0;
target[ i ].x = prev;
target[ i ].y = amount;
}
}
updateFrustums() {
this.getBreaks();
this.initCascades();
this.updateShadowBounds();
this.updateUniforms();
}
remove() {
for ( let i = 0; i < this.lights.length; i ++ ) {
this.parent.remove( this.lights[ i ].target );
this.parent.remove( this.lights[ i ] );
}
}
dispose() {
const shaders = this.shaders;
shaders.forEach( function ( shader, material ) {
delete material.onBeforeCompile;
delete material.defines.USE_CSM;
delete material.defines.CSM_CASCADES;
delete material.defines.CSM_FADE;
if ( shader !== null ) {
delete shader.uniforms.CSM_cascades;
delete shader.uniforms.cameraNear;
delete shader.uniforms.shadowFar;
}
material.needsUpdate = true;
} );
shaders.clear();
}
}