103 lines
3.6 KiB
TypeScript
103 lines
3.6 KiB
TypeScript
import * as Core from "../core.js";
|
|
import { APIResource } from "../resource.js";
|
|
import * as EmbeddingsAPI from "./embeddings.js";
|
|
export declare class Embeddings extends APIResource {
|
|
/**
|
|
* Creates an embedding vector representing the input text.
|
|
*/
|
|
create(body: EmbeddingCreateParams, options?: Core.RequestOptions): Core.APIPromise<CreateEmbeddingResponse>;
|
|
}
|
|
export interface CreateEmbeddingResponse {
|
|
/**
|
|
* The list of embeddings generated by the model.
|
|
*/
|
|
data: Array<Embedding>;
|
|
/**
|
|
* The name of the model used to generate the embedding.
|
|
*/
|
|
model: string;
|
|
/**
|
|
* The object type, which is always "list".
|
|
*/
|
|
object: 'list';
|
|
/**
|
|
* The usage information for the request.
|
|
*/
|
|
usage: CreateEmbeddingResponse.Usage;
|
|
}
|
|
export declare namespace CreateEmbeddingResponse {
|
|
/**
|
|
* The usage information for the request.
|
|
*/
|
|
interface Usage {
|
|
/**
|
|
* The number of tokens used by the prompt.
|
|
*/
|
|
prompt_tokens: number;
|
|
/**
|
|
* The total number of tokens used by the request.
|
|
*/
|
|
total_tokens: number;
|
|
}
|
|
}
|
|
/**
|
|
* Represents an embedding vector returned by embedding endpoint.
|
|
*/
|
|
export interface Embedding {
|
|
/**
|
|
* The embedding vector, which is a list of floats. The length of vector depends on
|
|
* the model as listed in the
|
|
* [embedding guide](https://platform.openai.com/docs/guides/embeddings).
|
|
*/
|
|
embedding: Array<number>;
|
|
/**
|
|
* The index of the embedding in the list of embeddings.
|
|
*/
|
|
index: number;
|
|
/**
|
|
* The object type, which is always "embedding".
|
|
*/
|
|
object: 'embedding';
|
|
}
|
|
export interface EmbeddingCreateParams {
|
|
/**
|
|
* Input text to embed, encoded as a string or array of tokens. To embed multiple
|
|
* inputs in a single request, pass an array of strings or array of token arrays.
|
|
* The input must not exceed the max input tokens for the model (8192 tokens for
|
|
* `text-embedding-ada-002`), cannot be an empty string, and any array must be 2048
|
|
* dimensions or less.
|
|
* [Example Python code](https://cookbook.openai.com/examples/how_to_count_tokens_with_tiktoken)
|
|
* for counting tokens.
|
|
*/
|
|
input: string | Array<string> | Array<number> | Array<Array<number>>;
|
|
/**
|
|
* ID of the model to use. You can use the
|
|
* [List models](https://platform.openai.com/docs/api-reference/models/list) API to
|
|
* see all of your available models, or see our
|
|
* [Model overview](https://platform.openai.com/docs/models/overview) for
|
|
* descriptions of them.
|
|
*/
|
|
model: (string & {}) | 'text-embedding-ada-002' | 'text-embedding-3-small' | 'text-embedding-3-large';
|
|
/**
|
|
* The number of dimensions the resulting output embeddings should have. Only
|
|
* supported in `text-embedding-3` and later models.
|
|
*/
|
|
dimensions?: number;
|
|
/**
|
|
* The format to return the embeddings in. Can be either `float` or
|
|
* [`base64`](https://pypi.org/project/pybase64/).
|
|
*/
|
|
encoding_format?: 'float' | 'base64';
|
|
/**
|
|
* A unique identifier representing your end-user, which can help OpenAI to monitor
|
|
* and detect abuse.
|
|
* [Learn more](https://platform.openai.com/docs/guides/safety-best-practices/end-user-ids).
|
|
*/
|
|
user?: string;
|
|
}
|
|
export declare namespace Embeddings {
|
|
export import CreateEmbeddingResponse = EmbeddingsAPI.CreateEmbeddingResponse;
|
|
export import Embedding = EmbeddingsAPI.Embedding;
|
|
export import EmbeddingCreateParams = EmbeddingsAPI.EmbeddingCreateParams;
|
|
}
|
|
//# sourceMappingURL=embeddings.d.ts.map
|