import { BufferAttribute, BufferGeometry, Float32BufferAttribute, InstancedBufferAttribute, InterleavedBuffer, InterleavedBufferAttribute, TriangleFanDrawMode, TriangleStripDrawMode, TrianglesDrawMode, Vector3, } from 'three'; function computeMikkTSpaceTangents( geometry, MikkTSpace, negateSign = true ) { if ( ! MikkTSpace || ! MikkTSpace.isReady ) { throw new Error( 'BufferGeometryUtils: Initialized MikkTSpace library required.' ); } if ( ! geometry.hasAttribute( 'position' ) || ! geometry.hasAttribute( 'normal' ) || ! geometry.hasAttribute( 'uv' ) ) { throw new Error( 'BufferGeometryUtils: Tangents require "position", "normal", and "uv" attributes.' ); } function getAttributeArray( attribute ) { if ( attribute.normalized || attribute.isInterleavedBufferAttribute ) { const dstArray = new Float32Array( attribute.count * attribute.itemSize ); for ( let i = 0, j = 0; i < attribute.count; i ++ ) { dstArray[ j ++ ] = attribute.getX( i ); dstArray[ j ++ ] = attribute.getY( i ); if ( attribute.itemSize > 2 ) { dstArray[ j ++ ] = attribute.getZ( i ); } } return dstArray; } if ( attribute.array instanceof Float32Array ) { return attribute.array; } return new Float32Array( attribute.array ); } // MikkTSpace algorithm requires non-indexed input. const _geometry = geometry.index ? geometry.toNonIndexed() : geometry; // Compute vertex tangents. const tangents = MikkTSpace.generateTangents( getAttributeArray( _geometry.attributes.position ), getAttributeArray( _geometry.attributes.normal ), getAttributeArray( _geometry.attributes.uv ) ); // Texture coordinate convention of glTF differs from the apparent // default of the MikkTSpace library; .w component must be flipped. if ( negateSign ) { for ( let i = 3; i < tangents.length; i += 4 ) { tangents[ i ] *= - 1; } } // _geometry.setAttribute( 'tangent', new BufferAttribute( tangents, 4 ) ); if ( geometry !== _geometry ) { geometry.copy( _geometry ); } return geometry; } /** * @param {Array} geometries * @param {Boolean} useGroups * @return {BufferGeometry} */ function mergeGeometries( geometries, useGroups = false ) { const isIndexed = geometries[ 0 ].index !== null; const attributesUsed = new Set( Object.keys( geometries[ 0 ].attributes ) ); const morphAttributesUsed = new Set( Object.keys( geometries[ 0 ].morphAttributes ) ); const attributes = {}; const morphAttributes = {}; const morphTargetsRelative = geometries[ 0 ].morphTargetsRelative; const mergedGeometry = new BufferGeometry(); let offset = 0; for ( let i = 0; i < geometries.length; ++ i ) { const geometry = geometries[ i ]; let attributesCount = 0; // ensure that all geometries are indexed, or none if ( isIndexed !== ( geometry.index !== null ) ) { console.error( 'THREE.BufferGeometryUtils: .mergeGeometries() failed with geometry at index ' + i + '. All geometries must have compatible attributes; make sure index attribute exists among all geometries, or in none of them.' ); return null; } // gather attributes, exit early if they're different for ( const name in geometry.attributes ) { if ( ! attributesUsed.has( name ) ) { console.error( 'THREE.BufferGeometryUtils: .mergeGeometries() failed with geometry at index ' + i + '. All geometries must have compatible attributes; make sure "' + name + '" attribute exists among all geometries, or in none of them.' ); return null; } if ( attributes[ name ] === undefined ) attributes[ name ] = []; attributes[ name ].push( geometry.attributes[ name ] ); attributesCount ++; } // ensure geometries have the same number of attributes if ( attributesCount !== attributesUsed.size ) { console.error( 'THREE.BufferGeometryUtils: .mergeGeometries() failed with geometry at index ' + i + '. Make sure all geometries have the same number of attributes.' ); return null; } // gather morph attributes, exit early if they're different if ( morphTargetsRelative !== geometry.morphTargetsRelative ) { console.error( 'THREE.BufferGeometryUtils: .mergeGeometries() failed with geometry at index ' + i + '. .morphTargetsRelative must be consistent throughout all geometries.' ); return null; } for ( const name in geometry.morphAttributes ) { if ( ! morphAttributesUsed.has( name ) ) { console.error( 'THREE.BufferGeometryUtils: .mergeGeometries() failed with geometry at index ' + i + '. .morphAttributes must be consistent throughout all geometries.' ); return null; } if ( morphAttributes[ name ] === undefined ) morphAttributes[ name ] = []; morphAttributes[ name ].push( geometry.morphAttributes[ name ] ); } if ( useGroups ) { let count; if ( isIndexed ) { count = geometry.index.count; } else if ( geometry.attributes.position !== undefined ) { count = geometry.attributes.position.count; } else { console.error( 'THREE.BufferGeometryUtils: .mergeGeometries() failed with geometry at index ' + i + '. The geometry must have either an index or a position attribute' ); return null; } mergedGeometry.addGroup( offset, count, i ); offset += count; } } // merge indices if ( isIndexed ) { let indexOffset = 0; const mergedIndex = []; for ( let i = 0; i < geometries.length; ++ i ) { const index = geometries[ i ].index; for ( let j = 0; j < index.count; ++ j ) { mergedIndex.push( index.getX( j ) + indexOffset ); } indexOffset += geometries[ i ].attributes.position.count; } mergedGeometry.setIndex( mergedIndex ); } // merge attributes for ( const name in attributes ) { const mergedAttribute = mergeAttributes( attributes[ name ] ); if ( ! mergedAttribute ) { console.error( 'THREE.BufferGeometryUtils: .mergeGeometries() failed while trying to merge the ' + name + ' attribute.' ); return null; } mergedGeometry.setAttribute( name, mergedAttribute ); } // merge morph attributes for ( const name in morphAttributes ) { const numMorphTargets = morphAttributes[ name ][ 0 ].length; if ( numMorphTargets === 0 ) break; mergedGeometry.morphAttributes = mergedGeometry.morphAttributes || {}; mergedGeometry.morphAttributes[ name ] = []; for ( let i = 0; i < numMorphTargets; ++ i ) { const morphAttributesToMerge = []; for ( let j = 0; j < morphAttributes[ name ].length; ++ j ) { morphAttributesToMerge.push( morphAttributes[ name ][ j ][ i ] ); } const mergedMorphAttribute = mergeAttributes( morphAttributesToMerge ); if ( ! mergedMorphAttribute ) { console.error( 'THREE.BufferGeometryUtils: .mergeGeometries() failed while trying to merge the ' + name + ' morphAttribute.' ); return null; } mergedGeometry.morphAttributes[ name ].push( mergedMorphAttribute ); } } return mergedGeometry; } /** * @param {Array} attributes * @return {BufferAttribute} */ function mergeAttributes( attributes ) { let TypedArray; let itemSize; let normalized; let gpuType = - 1; let arrayLength = 0; for ( let i = 0; i < attributes.length; ++ i ) { const attribute = attributes[ i ]; if ( TypedArray === undefined ) TypedArray = attribute.array.constructor; if ( TypedArray !== attribute.array.constructor ) { console.error( 'THREE.BufferGeometryUtils: .mergeAttributes() failed. BufferAttribute.array must be of consistent array types across matching attributes.' ); return null; } if ( itemSize === undefined ) itemSize = attribute.itemSize; if ( itemSize !== attribute.itemSize ) { console.error( 'THREE.BufferGeometryUtils: .mergeAttributes() failed. BufferAttribute.itemSize must be consistent across matching attributes.' ); return null; } if ( normalized === undefined ) normalized = attribute.normalized; if ( normalized !== attribute.normalized ) { console.error( 'THREE.BufferGeometryUtils: .mergeAttributes() failed. BufferAttribute.normalized must be consistent across matching attributes.' ); return null; } if ( gpuType === - 1 ) gpuType = attribute.gpuType; if ( gpuType !== attribute.gpuType ) { console.error( 'THREE.BufferGeometryUtils: .mergeAttributes() failed. BufferAttribute.gpuType must be consistent across matching attributes.' ); return null; } arrayLength += attribute.count * itemSize; } const array = new TypedArray( arrayLength ); const result = new BufferAttribute( array, itemSize, normalized ); let offset = 0; for ( let i = 0; i < attributes.length; ++ i ) { const attribute = attributes[ i ]; if ( attribute.isInterleavedBufferAttribute ) { const tupleOffset = offset / itemSize; for ( let j = 0, l = attribute.count; j < l; j ++ ) { for ( let c = 0; c < itemSize; c ++ ) { const value = attribute.getComponent( j, c ); result.setComponent( j + tupleOffset, c, value ); } } } else { array.set( attribute.array, offset ); } offset += attribute.count * itemSize; } if ( gpuType !== undefined ) { result.gpuType = gpuType; } return result; } /** * @param {BufferAttribute} * @return {BufferAttribute} */ export function deepCloneAttribute( attribute ) { if ( attribute.isInstancedInterleavedBufferAttribute || attribute.isInterleavedBufferAttribute ) { return deinterleaveAttribute( attribute ); } if ( attribute.isInstancedBufferAttribute ) { return new InstancedBufferAttribute().copy( attribute ); } return new BufferAttribute().copy( attribute ); } /** * @param {Array} attributes * @return {Array} */ function interleaveAttributes( attributes ) { // Interleaves the provided attributes into an InterleavedBuffer and returns // a set of InterleavedBufferAttributes for each attribute let TypedArray; let arrayLength = 0; let stride = 0; // calculate the length and type of the interleavedBuffer for ( let i = 0, l = attributes.length; i < l; ++ i ) { const attribute = attributes[ i ]; if ( TypedArray === undefined ) TypedArray = attribute.array.constructor; if ( TypedArray !== attribute.array.constructor ) { console.error( 'AttributeBuffers of different types cannot be interleaved' ); return null; } arrayLength += attribute.array.length; stride += attribute.itemSize; } // Create the set of buffer attributes const interleavedBuffer = new InterleavedBuffer( new TypedArray( arrayLength ), stride ); let offset = 0; const res = []; const getters = [ 'getX', 'getY', 'getZ', 'getW' ]; const setters = [ 'setX', 'setY', 'setZ', 'setW' ]; for ( let j = 0, l = attributes.length; j < l; j ++ ) { const attribute = attributes[ j ]; const itemSize = attribute.itemSize; const count = attribute.count; const iba = new InterleavedBufferAttribute( interleavedBuffer, itemSize, offset, attribute.normalized ); res.push( iba ); offset += itemSize; // Move the data for each attribute into the new interleavedBuffer // at the appropriate offset for ( let c = 0; c < count; c ++ ) { for ( let k = 0; k < itemSize; k ++ ) { iba[ setters[ k ] ]( c, attribute[ getters[ k ] ]( c ) ); } } } return res; } // returns a new, non-interleaved version of the provided attribute export function deinterleaveAttribute( attribute ) { const cons = attribute.data.array.constructor; const count = attribute.count; const itemSize = attribute.itemSize; const normalized = attribute.normalized; const array = new cons( count * itemSize ); let newAttribute; if ( attribute.isInstancedInterleavedBufferAttribute ) { newAttribute = new InstancedBufferAttribute( array, itemSize, normalized, attribute.meshPerAttribute ); } else { newAttribute = new BufferAttribute( array, itemSize, normalized ); } for ( let i = 0; i < count; i ++ ) { newAttribute.setX( i, attribute.getX( i ) ); if ( itemSize >= 2 ) { newAttribute.setY( i, attribute.getY( i ) ); } if ( itemSize >= 3 ) { newAttribute.setZ( i, attribute.getZ( i ) ); } if ( itemSize >= 4 ) { newAttribute.setW( i, attribute.getW( i ) ); } } return newAttribute; } // deinterleaves all attributes on the geometry export function deinterleaveGeometry( geometry ) { const attributes = geometry.attributes; const morphTargets = geometry.morphTargets; const attrMap = new Map(); for ( const key in attributes ) { const attr = attributes[ key ]; if ( attr.isInterleavedBufferAttribute ) { if ( ! attrMap.has( attr ) ) { attrMap.set( attr, deinterleaveAttribute( attr ) ); } attributes[ key ] = attrMap.get( attr ); } } for ( const key in morphTargets ) { const attr = morphTargets[ key ]; if ( attr.isInterleavedBufferAttribute ) { if ( ! attrMap.has( attr ) ) { attrMap.set( attr, deinterleaveAttribute( attr ) ); } morphTargets[ key ] = attrMap.get( attr ); } } } /** * @param {BufferGeometry} geometry * @return {number} */ function estimateBytesUsed( geometry ) { // Return the estimated memory used by this geometry in bytes // Calculate using itemSize, count, and BYTES_PER_ELEMENT to account // for InterleavedBufferAttributes. let mem = 0; for ( const name in geometry.attributes ) { const attr = geometry.getAttribute( name ); mem += attr.count * attr.itemSize * attr.array.BYTES_PER_ELEMENT; } const indices = geometry.getIndex(); mem += indices ? indices.count * indices.itemSize * indices.array.BYTES_PER_ELEMENT : 0; return mem; } /** * @param {BufferGeometry} geometry * @param {number} tolerance * @return {BufferGeometry} */ function mergeVertices( geometry, tolerance = 1e-4 ) { tolerance = Math.max( tolerance, Number.EPSILON ); // Generate an index buffer if the geometry doesn't have one, or optimize it // if it's already available. const hashToIndex = {}; const indices = geometry.getIndex(); const positions = geometry.getAttribute( 'position' ); const vertexCount = indices ? indices.count : positions.count; // next value for triangle indices let nextIndex = 0; // attributes and new attribute arrays const attributeNames = Object.keys( geometry.attributes ); const tmpAttributes = {}; const tmpMorphAttributes = {}; const newIndices = []; const getters = [ 'getX', 'getY', 'getZ', 'getW' ]; const setters = [ 'setX', 'setY', 'setZ', 'setW' ]; // Initialize the arrays, allocating space conservatively. Extra // space will be trimmed in the last step. for ( let i = 0, l = attributeNames.length; i < l; i ++ ) { const name = attributeNames[ i ]; const attr = geometry.attributes[ name ]; tmpAttributes[ name ] = new BufferAttribute( new attr.array.constructor( attr.count * attr.itemSize ), attr.itemSize, attr.normalized ); const morphAttr = geometry.morphAttributes[ name ]; if ( morphAttr ) { tmpMorphAttributes[ name ] = new BufferAttribute( new morphAttr.array.constructor( morphAttr.count * morphAttr.itemSize ), morphAttr.itemSize, morphAttr.normalized ); } } // convert the error tolerance to an amount of decimal places to truncate to const halfTolerance = tolerance * 0.5; const exponent = Math.log10( 1 / tolerance ); const hashMultiplier = Math.pow( 10, exponent ); const hashAdditive = halfTolerance * hashMultiplier; for ( let i = 0; i < vertexCount; i ++ ) { const index = indices ? indices.getX( i ) : i; // Generate a hash for the vertex attributes at the current index 'i' let hash = ''; for ( let j = 0, l = attributeNames.length; j < l; j ++ ) { const name = attributeNames[ j ]; const attribute = geometry.getAttribute( name ); const itemSize = attribute.itemSize; for ( let k = 0; k < itemSize; k ++ ) { // double tilde truncates the decimal value hash += `${ ~ ~ ( attribute[ getters[ k ] ]( index ) * hashMultiplier + hashAdditive ) },`; } } // Add another reference to the vertex if it's already // used by another index if ( hash in hashToIndex ) { newIndices.push( hashToIndex[ hash ] ); } else { // copy data to the new index in the temporary attributes for ( let j = 0, l = attributeNames.length; j < l; j ++ ) { const name = attributeNames[ j ]; const attribute = geometry.getAttribute( name ); const morphAttr = geometry.morphAttributes[ name ]; const itemSize = attribute.itemSize; const newarray = tmpAttributes[ name ]; const newMorphArrays = tmpMorphAttributes[ name ]; for ( let k = 0; k < itemSize; k ++ ) { const getterFunc = getters[ k ]; const setterFunc = setters[ k ]; newarray[ setterFunc ]( nextIndex, attribute[ getterFunc ]( index ) ); if ( morphAttr ) { for ( let m = 0, ml = morphAttr.length; m < ml; m ++ ) { newMorphArrays[ m ][ setterFunc ]( nextIndex, morphAttr[ m ][ getterFunc ]( index ) ); } } } } hashToIndex[ hash ] = nextIndex; newIndices.push( nextIndex ); nextIndex ++; } } // generate result BufferGeometry const result = geometry.clone(); for ( const name in geometry.attributes ) { const tmpAttribute = tmpAttributes[ name ]; result.setAttribute( name, new BufferAttribute( tmpAttribute.array.slice( 0, nextIndex * tmpAttribute.itemSize ), tmpAttribute.itemSize, tmpAttribute.normalized, ) ); if ( ! ( name in tmpMorphAttributes ) ) continue; for ( let j = 0; j < tmpMorphAttributes[ name ].length; j ++ ) { const tmpMorphAttribute = tmpMorphAttributes[ name ][ j ]; result.morphAttributes[ name ][ j ] = new BufferAttribute( tmpMorphAttribute.array.slice( 0, nextIndex * tmpMorphAttribute.itemSize ), tmpMorphAttribute.itemSize, tmpMorphAttribute.normalized, ); } } // indices result.setIndex( newIndices ); return result; } /** * @param {BufferGeometry} geometry * @param {number} drawMode * @return {BufferGeometry} */ function toTrianglesDrawMode( geometry, drawMode ) { if ( drawMode === TrianglesDrawMode ) { console.warn( 'THREE.BufferGeometryUtils.toTrianglesDrawMode(): Geometry already defined as triangles.' ); return geometry; } if ( drawMode === TriangleFanDrawMode || drawMode === TriangleStripDrawMode ) { let index = geometry.getIndex(); // generate index if not present if ( index === null ) { const indices = []; const position = geometry.getAttribute( 'position' ); if ( position !== undefined ) { for ( let i = 0; i < position.count; i ++ ) { indices.push( i ); } geometry.setIndex( indices ); index = geometry.getIndex(); } else { console.error( 'THREE.BufferGeometryUtils.toTrianglesDrawMode(): Undefined position attribute. Processing not possible.' ); return geometry; } } // const numberOfTriangles = index.count - 2; const newIndices = []; if ( drawMode === TriangleFanDrawMode ) { // gl.TRIANGLE_FAN for ( let i = 1; i <= numberOfTriangles; i ++ ) { newIndices.push( index.getX( 0 ) ); newIndices.push( index.getX( i ) ); newIndices.push( index.getX( i + 1 ) ); } } else { // gl.TRIANGLE_STRIP for ( let i = 0; i < numberOfTriangles; i ++ ) { if ( i % 2 === 0 ) { newIndices.push( index.getX( i ) ); newIndices.push( index.getX( i + 1 ) ); newIndices.push( index.getX( i + 2 ) ); } else { newIndices.push( index.getX( i + 2 ) ); newIndices.push( index.getX( i + 1 ) ); newIndices.push( index.getX( i ) ); } } } if ( ( newIndices.length / 3 ) !== numberOfTriangles ) { console.error( 'THREE.BufferGeometryUtils.toTrianglesDrawMode(): Unable to generate correct amount of triangles.' ); } // build final geometry const newGeometry = geometry.clone(); newGeometry.setIndex( newIndices ); newGeometry.clearGroups(); return newGeometry; } else { console.error( 'THREE.BufferGeometryUtils.toTrianglesDrawMode(): Unknown draw mode:', drawMode ); return geometry; } } /** * Calculates the morphed attributes of a morphed/skinned BufferGeometry. * Helpful for Raytracing or Decals. * @param {Mesh | Line | Points} object An instance of Mesh, Line or Points. * @return {Object} An Object with original position/normal attributes and morphed ones. */ function computeMorphedAttributes( object ) { const _vA = new Vector3(); const _vB = new Vector3(); const _vC = new Vector3(); const _tempA = new Vector3(); const _tempB = new Vector3(); const _tempC = new Vector3(); const _morphA = new Vector3(); const _morphB = new Vector3(); const _morphC = new Vector3(); function _calculateMorphedAttributeData( object, attribute, morphAttribute, morphTargetsRelative, a, b, c, modifiedAttributeArray ) { _vA.fromBufferAttribute( attribute, a ); _vB.fromBufferAttribute( attribute, b ); _vC.fromBufferAttribute( attribute, c ); const morphInfluences = object.morphTargetInfluences; if ( morphAttribute && morphInfluences ) { _morphA.set( 0, 0, 0 ); _morphB.set( 0, 0, 0 ); _morphC.set( 0, 0, 0 ); for ( let i = 0, il = morphAttribute.length; i < il; i ++ ) { const influence = morphInfluences[ i ]; const morph = morphAttribute[ i ]; if ( influence === 0 ) continue; _tempA.fromBufferAttribute( morph, a ); _tempB.fromBufferAttribute( morph, b ); _tempC.fromBufferAttribute( morph, c ); if ( morphTargetsRelative ) { _morphA.addScaledVector( _tempA, influence ); _morphB.addScaledVector( _tempB, influence ); _morphC.addScaledVector( _tempC, influence ); } else { _morphA.addScaledVector( _tempA.sub( _vA ), influence ); _morphB.addScaledVector( _tempB.sub( _vB ), influence ); _morphC.addScaledVector( _tempC.sub( _vC ), influence ); } } _vA.add( _morphA ); _vB.add( _morphB ); _vC.add( _morphC ); } if ( object.isSkinnedMesh ) { object.applyBoneTransform( a, _vA ); object.applyBoneTransform( b, _vB ); object.applyBoneTransform( c, _vC ); } modifiedAttributeArray[ a * 3 + 0 ] = _vA.x; modifiedAttributeArray[ a * 3 + 1 ] = _vA.y; modifiedAttributeArray[ a * 3 + 2 ] = _vA.z; modifiedAttributeArray[ b * 3 + 0 ] = _vB.x; modifiedAttributeArray[ b * 3 + 1 ] = _vB.y; modifiedAttributeArray[ b * 3 + 2 ] = _vB.z; modifiedAttributeArray[ c * 3 + 0 ] = _vC.x; modifiedAttributeArray[ c * 3 + 1 ] = _vC.y; modifiedAttributeArray[ c * 3 + 2 ] = _vC.z; } const geometry = object.geometry; const material = object.material; let a, b, c; const index = geometry.index; const positionAttribute = geometry.attributes.position; const morphPosition = geometry.morphAttributes.position; const morphTargetsRelative = geometry.morphTargetsRelative; const normalAttribute = geometry.attributes.normal; const morphNormal = geometry.morphAttributes.position; const groups = geometry.groups; const drawRange = geometry.drawRange; let i, j, il, jl; let group; let start, end; const modifiedPosition = new Float32Array( positionAttribute.count * positionAttribute.itemSize ); const modifiedNormal = new Float32Array( normalAttribute.count * normalAttribute.itemSize ); if ( index !== null ) { // indexed buffer geometry if ( Array.isArray( material ) ) { for ( i = 0, il = groups.length; i < il; i ++ ) { group = groups[ i ]; start = Math.max( group.start, drawRange.start ); end = Math.min( ( group.start + group.count ), ( drawRange.start + drawRange.count ) ); for ( j = start, jl = end; j < jl; j += 3 ) { a = index.getX( j ); b = index.getX( j + 1 ); c = index.getX( j + 2 ); _calculateMorphedAttributeData( object, positionAttribute, morphPosition, morphTargetsRelative, a, b, c, modifiedPosition ); _calculateMorphedAttributeData( object, normalAttribute, morphNormal, morphTargetsRelative, a, b, c, modifiedNormal ); } } } else { start = Math.max( 0, drawRange.start ); end = Math.min( index.count, ( drawRange.start + drawRange.count ) ); for ( i = start, il = end; i < il; i += 3 ) { a = index.getX( i ); b = index.getX( i + 1 ); c = index.getX( i + 2 ); _calculateMorphedAttributeData( object, positionAttribute, morphPosition, morphTargetsRelative, a, b, c, modifiedPosition ); _calculateMorphedAttributeData( object, normalAttribute, morphNormal, morphTargetsRelative, a, b, c, modifiedNormal ); } } } else { // non-indexed buffer geometry if ( Array.isArray( material ) ) { for ( i = 0, il = groups.length; i < il; i ++ ) { group = groups[ i ]; start = Math.max( group.start, drawRange.start ); end = Math.min( ( group.start + group.count ), ( drawRange.start + drawRange.count ) ); for ( j = start, jl = end; j < jl; j += 3 ) { a = j; b = j + 1; c = j + 2; _calculateMorphedAttributeData( object, positionAttribute, morphPosition, morphTargetsRelative, a, b, c, modifiedPosition ); _calculateMorphedAttributeData( object, normalAttribute, morphNormal, morphTargetsRelative, a, b, c, modifiedNormal ); } } } else { start = Math.max( 0, drawRange.start ); end = Math.min( positionAttribute.count, ( drawRange.start + drawRange.count ) ); for ( i = start, il = end; i < il; i += 3 ) { a = i; b = i + 1; c = i + 2; _calculateMorphedAttributeData( object, positionAttribute, morphPosition, morphTargetsRelative, a, b, c, modifiedPosition ); _calculateMorphedAttributeData( object, normalAttribute, morphNormal, morphTargetsRelative, a, b, c, modifiedNormal ); } } } const morphedPositionAttribute = new Float32BufferAttribute( modifiedPosition, 3 ); const morphedNormalAttribute = new Float32BufferAttribute( modifiedNormal, 3 ); return { positionAttribute: positionAttribute, normalAttribute: normalAttribute, morphedPositionAttribute: morphedPositionAttribute, morphedNormalAttribute: morphedNormalAttribute }; } function mergeGroups( geometry ) { if ( geometry.groups.length === 0 ) { console.warn( 'THREE.BufferGeometryUtils.mergeGroups(): No groups are defined. Nothing to merge.' ); return geometry; } let groups = geometry.groups; // sort groups by material index groups = groups.sort( ( a, b ) => { if ( a.materialIndex !== b.materialIndex ) return a.materialIndex - b.materialIndex; return a.start - b.start; } ); // create index for non-indexed geometries if ( geometry.getIndex() === null ) { const positionAttribute = geometry.getAttribute( 'position' ); const indices = []; for ( let i = 0; i < positionAttribute.count; i += 3 ) { indices.push( i, i + 1, i + 2 ); } geometry.setIndex( indices ); } // sort index const index = geometry.getIndex(); const newIndices = []; for ( let i = 0; i < groups.length; i ++ ) { const group = groups[ i ]; const groupStart = group.start; const groupLength = groupStart + group.count; for ( let j = groupStart; j < groupLength; j ++ ) { newIndices.push( index.getX( j ) ); } } geometry.dispose(); // Required to force buffer recreation geometry.setIndex( newIndices ); // update groups indices let start = 0; for ( let i = 0; i < groups.length; i ++ ) { const group = groups[ i ]; group.start = start; start += group.count; } // merge groups let currentGroup = groups[ 0 ]; geometry.groups = [ currentGroup ]; for ( let i = 1; i < groups.length; i ++ ) { const group = groups[ i ]; if ( currentGroup.materialIndex === group.materialIndex ) { currentGroup.count += group.count; } else { currentGroup = group; geometry.groups.push( currentGroup ); } } return geometry; } /** * Modifies the supplied geometry if it is non-indexed, otherwise creates a new, * non-indexed geometry. Returns the geometry with smooth normals everywhere except * faces that meet at an angle greater than the crease angle. * * @param {BufferGeometry} geometry * @param {number} [creaseAngle] * @return {BufferGeometry} */ function toCreasedNormals( geometry, creaseAngle = Math.PI / 3 /* 60 degrees */ ) { const creaseDot = Math.cos( creaseAngle ); const hashMultiplier = ( 1 + 1e-10 ) * 1e2; // reusable vectors const verts = [ new Vector3(), new Vector3(), new Vector3() ]; const tempVec1 = new Vector3(); const tempVec2 = new Vector3(); const tempNorm = new Vector3(); const tempNorm2 = new Vector3(); // hashes a vector function hashVertex( v ) { const x = ~ ~ ( v.x * hashMultiplier ); const y = ~ ~ ( v.y * hashMultiplier ); const z = ~ ~ ( v.z * hashMultiplier ); return `${x},${y},${z}`; } // BufferGeometry.toNonIndexed() warns if the geometry is non-indexed // and returns the original geometry const resultGeometry = geometry.index ? geometry.toNonIndexed() : geometry; const posAttr = resultGeometry.attributes.position; const vertexMap = {}; // find all the normals shared by commonly located vertices for ( let i = 0, l = posAttr.count / 3; i < l; i ++ ) { const i3 = 3 * i; const a = verts[ 0 ].fromBufferAttribute( posAttr, i3 + 0 ); const b = verts[ 1 ].fromBufferAttribute( posAttr, i3 + 1 ); const c = verts[ 2 ].fromBufferAttribute( posAttr, i3 + 2 ); tempVec1.subVectors( c, b ); tempVec2.subVectors( a, b ); // add the normal to the map for all vertices const normal = new Vector3().crossVectors( tempVec1, tempVec2 ).normalize(); for ( let n = 0; n < 3; n ++ ) { const vert = verts[ n ]; const hash = hashVertex( vert ); if ( ! ( hash in vertexMap ) ) { vertexMap[ hash ] = []; } vertexMap[ hash ].push( normal ); } } // average normals from all vertices that share a common location if they are within the // provided crease threshold const normalArray = new Float32Array( posAttr.count * 3 ); const normAttr = new BufferAttribute( normalArray, 3, false ); for ( let i = 0, l = posAttr.count / 3; i < l; i ++ ) { // get the face normal for this vertex const i3 = 3 * i; const a = verts[ 0 ].fromBufferAttribute( posAttr, i3 + 0 ); const b = verts[ 1 ].fromBufferAttribute( posAttr, i3 + 1 ); const c = verts[ 2 ].fromBufferAttribute( posAttr, i3 + 2 ); tempVec1.subVectors( c, b ); tempVec2.subVectors( a, b ); tempNorm.crossVectors( tempVec1, tempVec2 ).normalize(); // average all normals that meet the threshold and set the normal value for ( let n = 0; n < 3; n ++ ) { const vert = verts[ n ]; const hash = hashVertex( vert ); const otherNormals = vertexMap[ hash ]; tempNorm2.set( 0, 0, 0 ); for ( let k = 0, lk = otherNormals.length; k < lk; k ++ ) { const otherNorm = otherNormals[ k ]; if ( tempNorm.dot( otherNorm ) > creaseDot ) { tempNorm2.add( otherNorm ); } } tempNorm2.normalize(); normAttr.setXYZ( i3 + n, tempNorm2.x, tempNorm2.y, tempNorm2.z ); } } resultGeometry.setAttribute( 'normal', normAttr ); return resultGeometry; } export { computeMikkTSpaceTangents, mergeGeometries, mergeAttributes, interleaveAttributes, estimateBytesUsed, mergeVertices, toTrianglesDrawMode, computeMorphedAttributes, mergeGroups, toCreasedNormals };