import { ClampToEdgeWrapping, DoubleSide, LinearFilter, Mesh, MeshBasicMaterial, PlaneGeometry, Texture, SRGBColorSpace } from 'three'; /** * This class has been made to hold a slice of a volume data * @class * @param {Volume} volume The associated volume * @param {number} [index=0] The index of the slice * @param {string} [axis='z'] For now only 'x', 'y' or 'z' but later it will change to a normal vector * @see Volume */ class VolumeSlice { constructor( volume, index, axis ) { const slice = this; /** * @member {Volume} volume The associated volume */ this.volume = volume; /** * @member {Number} index The index of the slice, if changed, will automatically call updateGeometry at the next repaint */ index = index || 0; Object.defineProperty( this, 'index', { get: function () { return index; }, set: function ( value ) { index = value; slice.geometryNeedsUpdate = true; return index; } } ); /** * @member {String} axis The normal axis */ this.axis = axis || 'z'; /** * @member {HTMLCanvasElement} canvas The final canvas used for the texture */ /** * @member {CanvasRenderingContext2D} ctx Context of the canvas */ this.canvas = document.createElement( 'canvas' ); /** * @member {HTMLCanvasElement} canvasBuffer The intermediary canvas used to paint the data */ /** * @member {CanvasRenderingContext2D} ctxBuffer Context of the canvas buffer */ this.canvasBuffer = document.createElement( 'canvas' ); this.updateGeometry(); const canvasMap = new Texture( this.canvas ); canvasMap.minFilter = LinearFilter; canvasMap.wrapS = canvasMap.wrapT = ClampToEdgeWrapping; canvasMap.colorSpace = SRGBColorSpace; const material = new MeshBasicMaterial( { map: canvasMap, side: DoubleSide, transparent: true } ); /** * @member {Mesh} mesh The mesh ready to get used in the scene */ this.mesh = new Mesh( this.geometry, material ); this.mesh.matrixAutoUpdate = false; /** * @member {Boolean} geometryNeedsUpdate If set to true, updateGeometry will be triggered at the next repaint */ this.geometryNeedsUpdate = true; this.repaint(); /** * @member {Number} iLength Width of slice in the original coordinate system, corresponds to the width of the buffer canvas */ /** * @member {Number} jLength Height of slice in the original coordinate system, corresponds to the height of the buffer canvas */ /** * @member {Function} sliceAccess Function that allow the slice to access right data * @see Volume.extractPerpendicularPlane * @param {Number} i The first coordinate * @param {Number} j The second coordinate * @returns {Number} the index corresponding to the voxel in volume.data of the given position in the slice */ } /** * @member {Function} repaint Refresh the texture and the geometry if geometryNeedsUpdate is set to true * @memberof VolumeSlice */ repaint() { if ( this.geometryNeedsUpdate ) { this.updateGeometry(); } const iLength = this.iLength, jLength = this.jLength, sliceAccess = this.sliceAccess, volume = this.volume, canvas = this.canvasBuffer, ctx = this.ctxBuffer; // get the imageData and pixel array from the canvas const imgData = ctx.getImageData( 0, 0, iLength, jLength ); const data = imgData.data; const volumeData = volume.data; const upperThreshold = volume.upperThreshold; const lowerThreshold = volume.lowerThreshold; const windowLow = volume.windowLow; const windowHigh = volume.windowHigh; // manipulate some pixel elements let pixelCount = 0; if ( volume.dataType === 'label' ) { //this part is currently useless but will be used when colortables will be handled for ( let j = 0; j < jLength; j ++ ) { for ( let i = 0; i < iLength; i ++ ) { let label = volumeData[ sliceAccess( i, j ) ]; label = label >= this.colorMap.length ? ( label % this.colorMap.length ) + 1 : label; const color = this.colorMap[ label ]; data[ 4 * pixelCount ] = ( color >> 24 ) & 0xff; data[ 4 * pixelCount + 1 ] = ( color >> 16 ) & 0xff; data[ 4 * pixelCount + 2 ] = ( color >> 8 ) & 0xff; data[ 4 * pixelCount + 3 ] = color & 0xff; pixelCount ++; } } } else { for ( let j = 0; j < jLength; j ++ ) { for ( let i = 0; i < iLength; i ++ ) { let value = volumeData[ sliceAccess( i, j ) ]; let alpha = 0xff; //apply threshold alpha = upperThreshold >= value ? ( lowerThreshold <= value ? alpha : 0 ) : 0; //apply window level value = Math.floor( 255 * ( value - windowLow ) / ( windowHigh - windowLow ) ); value = value > 255 ? 255 : ( value < 0 ? 0 : value | 0 ); data[ 4 * pixelCount ] = value; data[ 4 * pixelCount + 1 ] = value; data[ 4 * pixelCount + 2 ] = value; data[ 4 * pixelCount + 3 ] = alpha; pixelCount ++; } } } ctx.putImageData( imgData, 0, 0 ); this.ctx.drawImage( canvas, 0, 0, iLength, jLength, 0, 0, this.canvas.width, this.canvas.height ); this.mesh.material.map.needsUpdate = true; } /** * @member {Function} Refresh the geometry according to axis and index * @see Volume.extractPerpendicularPlane * @memberof VolumeSlice */ updateGeometry() { const extracted = this.volume.extractPerpendicularPlane( this.axis, this.index ); this.sliceAccess = extracted.sliceAccess; this.jLength = extracted.jLength; this.iLength = extracted.iLength; this.matrix = extracted.matrix; this.canvas.width = extracted.planeWidth; this.canvas.height = extracted.planeHeight; this.canvasBuffer.width = this.iLength; this.canvasBuffer.height = this.jLength; this.ctx = this.canvas.getContext( '2d' ); this.ctxBuffer = this.canvasBuffer.getContext( '2d' ); if ( this.geometry ) this.geometry.dispose(); // dispose existing geometry this.geometry = new PlaneGeometry( extracted.planeWidth, extracted.planeHeight ); if ( this.mesh ) { this.mesh.geometry = this.geometry; //reset mesh matrix this.mesh.matrix.identity(); this.mesh.applyMatrix4( this.matrix ); } this.geometryNeedsUpdate = false; } } export { VolumeSlice };