import { AnimationClip, Bone, Box3, BufferAttribute, BufferGeometry, ClampToEdgeWrapping, Color, ColorManagement, DirectionalLight, DoubleSide, FileLoader, FrontSide, Group, ImageBitmapLoader, InstancedMesh, InterleavedBuffer, InterleavedBufferAttribute, Interpolant, InterpolateDiscrete, InterpolateLinear, Line, LineBasicMaterial, LineLoop, LineSegments, LinearFilter, LinearMipmapLinearFilter, LinearMipmapNearestFilter, LinearSRGBColorSpace, Loader, LoaderUtils, Material, MathUtils, Matrix4, Mesh, MeshBasicMaterial, MeshPhysicalMaterial, MeshStandardMaterial, MirroredRepeatWrapping, NearestFilter, NearestMipmapLinearFilter, NearestMipmapNearestFilter, NumberKeyframeTrack, Object3D, OrthographicCamera, PerspectiveCamera, PointLight, Points, PointsMaterial, PropertyBinding, Quaternion, QuaternionKeyframeTrack, RepeatWrapping, Skeleton, SkinnedMesh, Sphere, SpotLight, Texture, TextureLoader, TriangleFanDrawMode, TriangleStripDrawMode, Vector2, Vector3, VectorKeyframeTrack, SRGBColorSpace, InstancedBufferAttribute } from 'three'; import { toTrianglesDrawMode } from '../utils/BufferGeometryUtils.js'; class GLTFLoader extends Loader { constructor( manager ) { super( manager ); this.dracoLoader = null; this.ktx2Loader = null; this.meshoptDecoder = null; this.pluginCallbacks = []; this.register( function ( parser ) { return new GLTFMaterialsClearcoatExtension( parser ); } ); this.register( function ( parser ) { return new GLTFMaterialsDispersionExtension( parser ); } ); this.register( function ( parser ) { return new GLTFTextureBasisUExtension( parser ); } ); this.register( function ( parser ) { return new GLTFTextureWebPExtension( parser ); } ); this.register( function ( parser ) { return new GLTFTextureAVIFExtension( parser ); } ); this.register( function ( parser ) { return new GLTFMaterialsSheenExtension( parser ); } ); this.register( function ( parser ) { return new GLTFMaterialsTransmissionExtension( parser ); } ); this.register( function ( parser ) { return new GLTFMaterialsVolumeExtension( parser ); } ); this.register( function ( parser ) { return new GLTFMaterialsIorExtension( parser ); } ); this.register( function ( parser ) { return new GLTFMaterialsEmissiveStrengthExtension( parser ); } ); this.register( function ( parser ) { return new GLTFMaterialsSpecularExtension( parser ); } ); this.register( function ( parser ) { return new GLTFMaterialsIridescenceExtension( parser ); } ); this.register( function ( parser ) { return new GLTFMaterialsAnisotropyExtension( parser ); } ); this.register( function ( parser ) { return new GLTFMaterialsBumpExtension( parser ); } ); this.register( function ( parser ) { return new GLTFLightsExtension( parser ); } ); this.register( function ( parser ) { return new GLTFMeshoptCompression( parser ); } ); this.register( function ( parser ) { return new GLTFMeshGpuInstancing( parser ); } ); } load( url, onLoad, onProgress, onError ) { const scope = this; let resourcePath; if ( this.resourcePath !== '' ) { resourcePath = this.resourcePath; } else if ( this.path !== '' ) { // If a base path is set, resources will be relative paths from that plus the relative path of the gltf file // Example path = 'https://my-cnd-server.com/', url = 'assets/models/model.gltf' // resourcePath = 'https://my-cnd-server.com/assets/models/' // referenced resource 'model.bin' will be loaded from 'https://my-cnd-server.com/assets/models/model.bin' // referenced resource '../textures/texture.png' will be loaded from 'https://my-cnd-server.com/assets/textures/texture.png' const relativeUrl = LoaderUtils.extractUrlBase( url ); resourcePath = LoaderUtils.resolveURL( relativeUrl, this.path ); } else { resourcePath = LoaderUtils.extractUrlBase( url ); } // Tells the LoadingManager to track an extra item, which resolves after // the model is fully loaded. This means the count of items loaded will // be incorrect, but ensures manager.onLoad() does not fire early. this.manager.itemStart( url ); const _onError = function ( e ) { if ( onError ) { onError( e ); } else { console.error( e ); } scope.manager.itemError( url ); scope.manager.itemEnd( url ); }; const loader = new FileLoader( this.manager ); loader.setPath( this.path ); loader.setResponseType( 'arraybuffer' ); loader.setRequestHeader( this.requestHeader ); loader.setWithCredentials( this.withCredentials ); loader.load( url, function ( data ) { try { scope.parse( data, resourcePath, function ( gltf ) { onLoad( gltf ); scope.manager.itemEnd( url ); }, _onError ); } catch ( e ) { _onError( e ); } }, onProgress, _onError ); } setDRACOLoader( dracoLoader ) { this.dracoLoader = dracoLoader; return this; } setDDSLoader() { throw new Error( 'THREE.GLTFLoader: "MSFT_texture_dds" no longer supported. Please update to "KHR_texture_basisu".' ); } setKTX2Loader( ktx2Loader ) { this.ktx2Loader = ktx2Loader; return this; } setMeshoptDecoder( meshoptDecoder ) { this.meshoptDecoder = meshoptDecoder; return this; } register( callback ) { if ( this.pluginCallbacks.indexOf( callback ) === - 1 ) { this.pluginCallbacks.push( callback ); } return this; } unregister( callback ) { if ( this.pluginCallbacks.indexOf( callback ) !== - 1 ) { this.pluginCallbacks.splice( this.pluginCallbacks.indexOf( callback ), 1 ); } return this; } parse( data, path, onLoad, onError ) { let json; const extensions = {}; const plugins = {}; const textDecoder = new TextDecoder(); if ( typeof data === 'string' ) { json = JSON.parse( data ); } else if ( data instanceof ArrayBuffer ) { const magic = textDecoder.decode( new Uint8Array( data, 0, 4 ) ); if ( magic === BINARY_EXTENSION_HEADER_MAGIC ) { try { extensions[ EXTENSIONS.KHR_BINARY_GLTF ] = new GLTFBinaryExtension( data ); } catch ( error ) { if ( onError ) onError( error ); return; } json = JSON.parse( extensions[ EXTENSIONS.KHR_BINARY_GLTF ].content ); } else { json = JSON.parse( textDecoder.decode( data ) ); } } else { json = data; } if ( json.asset === undefined || json.asset.version[ 0 ] < 2 ) { if ( onError ) onError( new Error( 'THREE.GLTFLoader: Unsupported asset. glTF versions >=2.0 are supported.' ) ); return; } const parser = new GLTFParser( json, { path: path || this.resourcePath || '', crossOrigin: this.crossOrigin, requestHeader: this.requestHeader, manager: this.manager, ktx2Loader: this.ktx2Loader, meshoptDecoder: this.meshoptDecoder } ); parser.fileLoader.setRequestHeader( this.requestHeader ); for ( let i = 0; i < this.pluginCallbacks.length; i ++ ) { const plugin = this.pluginCallbacks[ i ]( parser ); if ( ! plugin.name ) console.error( 'THREE.GLTFLoader: Invalid plugin found: missing name' ); plugins[ plugin.name ] = plugin; // Workaround to avoid determining as unknown extension // in addUnknownExtensionsToUserData(). // Remove this workaround if we move all the existing // extension handlers to plugin system extensions[ plugin.name ] = true; } if ( json.extensionsUsed ) { for ( let i = 0; i < json.extensionsUsed.length; ++ i ) { const extensionName = json.extensionsUsed[ i ]; const extensionsRequired = json.extensionsRequired || []; switch ( extensionName ) { case EXTENSIONS.KHR_MATERIALS_UNLIT: extensions[ extensionName ] = new GLTFMaterialsUnlitExtension(); break; case EXTENSIONS.KHR_DRACO_MESH_COMPRESSION: extensions[ extensionName ] = new GLTFDracoMeshCompressionExtension( json, this.dracoLoader ); break; case EXTENSIONS.KHR_TEXTURE_TRANSFORM: extensions[ extensionName ] = new GLTFTextureTransformExtension(); break; case EXTENSIONS.KHR_MESH_QUANTIZATION: extensions[ extensionName ] = new GLTFMeshQuantizationExtension(); break; default: if ( extensionsRequired.indexOf( extensionName ) >= 0 && plugins[ extensionName ] === undefined ) { console.warn( 'THREE.GLTFLoader: Unknown extension "' + extensionName + '".' ); } } } } parser.setExtensions( extensions ); parser.setPlugins( plugins ); parser.parse( onLoad, onError ); } parseAsync( data, path ) { const scope = this; return new Promise( function ( resolve, reject ) { scope.parse( data, path, resolve, reject ); } ); } } /* GLTFREGISTRY */ function GLTFRegistry() { let objects = {}; return { get: function ( key ) { return objects[ key ]; }, add: function ( key, object ) { objects[ key ] = object; }, remove: function ( key ) { delete objects[ key ]; }, removeAll: function () { objects = {}; } }; } /*********************************/ /********** EXTENSIONS ***********/ /*********************************/ const EXTENSIONS = { KHR_BINARY_GLTF: 'KHR_binary_glTF', KHR_DRACO_MESH_COMPRESSION: 'KHR_draco_mesh_compression', KHR_LIGHTS_PUNCTUAL: 'KHR_lights_punctual', KHR_MATERIALS_CLEARCOAT: 'KHR_materials_clearcoat', KHR_MATERIALS_DISPERSION: 'KHR_materials_dispersion', KHR_MATERIALS_IOR: 'KHR_materials_ior', KHR_MATERIALS_SHEEN: 'KHR_materials_sheen', KHR_MATERIALS_SPECULAR: 'KHR_materials_specular', KHR_MATERIALS_TRANSMISSION: 'KHR_materials_transmission', KHR_MATERIALS_IRIDESCENCE: 'KHR_materials_iridescence', KHR_MATERIALS_ANISOTROPY: 'KHR_materials_anisotropy', KHR_MATERIALS_UNLIT: 'KHR_materials_unlit', KHR_MATERIALS_VOLUME: 'KHR_materials_volume', KHR_TEXTURE_BASISU: 'KHR_texture_basisu', KHR_TEXTURE_TRANSFORM: 'KHR_texture_transform', KHR_MESH_QUANTIZATION: 'KHR_mesh_quantization', KHR_MATERIALS_EMISSIVE_STRENGTH: 'KHR_materials_emissive_strength', EXT_MATERIALS_BUMP: 'EXT_materials_bump', EXT_TEXTURE_WEBP: 'EXT_texture_webp', EXT_TEXTURE_AVIF: 'EXT_texture_avif', EXT_MESHOPT_COMPRESSION: 'EXT_meshopt_compression', EXT_MESH_GPU_INSTANCING: 'EXT_mesh_gpu_instancing' }; /** * Punctual Lights Extension * * Specification: https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Khronos/KHR_lights_punctual */ class GLTFLightsExtension { constructor( parser ) { this.parser = parser; this.name = EXTENSIONS.KHR_LIGHTS_PUNCTUAL; // Object3D instance caches this.cache = { refs: {}, uses: {} }; } _markDefs() { const parser = this.parser; const nodeDefs = this.parser.json.nodes || []; for ( let nodeIndex = 0, nodeLength = nodeDefs.length; nodeIndex < nodeLength; nodeIndex ++ ) { const nodeDef = nodeDefs[ nodeIndex ]; if ( nodeDef.extensions && nodeDef.extensions[ this.name ] && nodeDef.extensions[ this.name ].light !== undefined ) { parser._addNodeRef( this.cache, nodeDef.extensions[ this.name ].light ); } } } _loadLight( lightIndex ) { const parser = this.parser; const cacheKey = 'light:' + lightIndex; let dependency = parser.cache.get( cacheKey ); if ( dependency ) return dependency; const json = parser.json; const extensions = ( json.extensions && json.extensions[ this.name ] ) || {}; const lightDefs = extensions.lights || []; const lightDef = lightDefs[ lightIndex ]; let lightNode; const color = new Color( 0xffffff ); if ( lightDef.color !== undefined ) color.setRGB( lightDef.color[ 0 ], lightDef.color[ 1 ], lightDef.color[ 2 ], LinearSRGBColorSpace ); const range = lightDef.range !== undefined ? lightDef.range : 0; switch ( lightDef.type ) { case 'directional': lightNode = new DirectionalLight( color ); lightNode.target.position.set( 0, 0, - 1 ); lightNode.add( lightNode.target ); break; case 'point': lightNode = new PointLight( color ); lightNode.distance = range; break; case 'spot': lightNode = new SpotLight( color ); lightNode.distance = range; // Handle spotlight properties. lightDef.spot = lightDef.spot || {}; lightDef.spot.innerConeAngle = lightDef.spot.innerConeAngle !== undefined ? lightDef.spot.innerConeAngle : 0; lightDef.spot.outerConeAngle = lightDef.spot.outerConeAngle !== undefined ? lightDef.spot.outerConeAngle : Math.PI / 4.0; lightNode.angle = lightDef.spot.outerConeAngle; lightNode.penumbra = 1.0 - lightDef.spot.innerConeAngle / lightDef.spot.outerConeAngle; lightNode.target.position.set( 0, 0, - 1 ); lightNode.add( lightNode.target ); break; default: throw new Error( 'THREE.GLTFLoader: Unexpected light type: ' + lightDef.type ); } // Some lights (e.g. spot) default to a position other than the origin. Reset the position // here, because node-level parsing will only override position if explicitly specified. lightNode.position.set( 0, 0, 0 ); lightNode.decay = 2; assignExtrasToUserData( lightNode, lightDef ); if ( lightDef.intensity !== undefined ) lightNode.intensity = lightDef.intensity; lightNode.name = parser.createUniqueName( lightDef.name || ( 'light_' + lightIndex ) ); dependency = Promise.resolve( lightNode ); parser.cache.add( cacheKey, dependency ); return dependency; } getDependency( type, index ) { if ( type !== 'light' ) return; return this._loadLight( index ); } createNodeAttachment( nodeIndex ) { const self = this; const parser = this.parser; const json = parser.json; const nodeDef = json.nodes[ nodeIndex ]; const lightDef = ( nodeDef.extensions && nodeDef.extensions[ this.name ] ) || {}; const lightIndex = lightDef.light; if ( lightIndex === undefined ) return null; return this._loadLight( lightIndex ).then( function ( light ) { return parser._getNodeRef( self.cache, lightIndex, light ); } ); } } /** * Unlit Materials Extension * * Specification: https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Khronos/KHR_materials_unlit */ class GLTFMaterialsUnlitExtension { constructor() { this.name = EXTENSIONS.KHR_MATERIALS_UNLIT; } getMaterialType() { return MeshBasicMaterial; } extendParams( materialParams, materialDef, parser ) { const pending = []; materialParams.color = new Color( 1.0, 1.0, 1.0 ); materialParams.opacity = 1.0; const metallicRoughness = materialDef.pbrMetallicRoughness; if ( metallicRoughness ) { if ( Array.isArray( metallicRoughness.baseColorFactor ) ) { const array = metallicRoughness.baseColorFactor; materialParams.color.setRGB( array[ 0 ], array[ 1 ], array[ 2 ], LinearSRGBColorSpace ); materialParams.opacity = array[ 3 ]; } if ( metallicRoughness.baseColorTexture !== undefined ) { pending.push( parser.assignTexture( materialParams, 'map', metallicRoughness.baseColorTexture, SRGBColorSpace ) ); } } return Promise.all( pending ); } } /** * Materials Emissive Strength Extension * * Specification: https://github.com/KhronosGroup/glTF/blob/5768b3ce0ef32bc39cdf1bef10b948586635ead3/extensions/2.0/Khronos/KHR_materials_emissive_strength/README.md */ class GLTFMaterialsEmissiveStrengthExtension { constructor( parser ) { this.parser = parser; this.name = EXTENSIONS.KHR_MATERIALS_EMISSIVE_STRENGTH; } extendMaterialParams( materialIndex, materialParams ) { const parser = this.parser; const materialDef = parser.json.materials[ materialIndex ]; if ( ! materialDef.extensions || ! materialDef.extensions[ this.name ] ) { return Promise.resolve(); } const emissiveStrength = materialDef.extensions[ this.name ].emissiveStrength; if ( emissiveStrength !== undefined ) { materialParams.emissiveIntensity = emissiveStrength; } return Promise.resolve(); } } /** * Clearcoat Materials Extension * * Specification: https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Khronos/KHR_materials_clearcoat */ class GLTFMaterialsClearcoatExtension { constructor( parser ) { this.parser = parser; this.name = EXTENSIONS.KHR_MATERIALS_CLEARCOAT; } getMaterialType( materialIndex ) { const parser = this.parser; const materialDef = parser.json.materials[ materialIndex ]; if ( ! materialDef.extensions || ! materialDef.extensions[ this.name ] ) return null; return MeshPhysicalMaterial; } extendMaterialParams( materialIndex, materialParams ) { const parser = this.parser; const materialDef = parser.json.materials[ materialIndex ]; if ( ! materialDef.extensions || ! materialDef.extensions[ this.name ] ) { return Promise.resolve(); } const pending = []; const extension = materialDef.extensions[ this.name ]; if ( extension.clearcoatFactor !== undefined ) { materialParams.clearcoat = extension.clearcoatFactor; } if ( extension.clearcoatTexture !== undefined ) { pending.push( parser.assignTexture( materialParams, 'clearcoatMap', extension.clearcoatTexture ) ); } if ( extension.clearcoatRoughnessFactor !== undefined ) { materialParams.clearcoatRoughness = extension.clearcoatRoughnessFactor; } if ( extension.clearcoatRoughnessTexture !== undefined ) { pending.push( parser.assignTexture( materialParams, 'clearcoatRoughnessMap', extension.clearcoatRoughnessTexture ) ); } if ( extension.clearcoatNormalTexture !== undefined ) { pending.push( parser.assignTexture( materialParams, 'clearcoatNormalMap', extension.clearcoatNormalTexture ) ); if ( extension.clearcoatNormalTexture.scale !== undefined ) { const scale = extension.clearcoatNormalTexture.scale; materialParams.clearcoatNormalScale = new Vector2( scale, scale ); } } return Promise.all( pending ); } } /** * Materials dispersion Extension * * Specification: https://github.com/KhronosGroup/glTF/tree/main/extensions/2.0/Khronos/KHR_materials_dispersion */ class GLTFMaterialsDispersionExtension { constructor( parser ) { this.parser = parser; this.name = EXTENSIONS.KHR_MATERIALS_DISPERSION; } getMaterialType( materialIndex ) { const parser = this.parser; const materialDef = parser.json.materials[ materialIndex ]; if ( ! materialDef.extensions || ! materialDef.extensions[ this.name ] ) return null; return MeshPhysicalMaterial; } extendMaterialParams( materialIndex, materialParams ) { const parser = this.parser; const materialDef = parser.json.materials[ materialIndex ]; if ( ! materialDef.extensions || ! materialDef.extensions[ this.name ] ) { return Promise.resolve(); } const extension = materialDef.extensions[ this.name ]; materialParams.dispersion = extension.dispersion !== undefined ? extension.dispersion : 0; return Promise.resolve(); } } /** * Iridescence Materials Extension * * Specification: https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Khronos/KHR_materials_iridescence */ class GLTFMaterialsIridescenceExtension { constructor( parser ) { this.parser = parser; this.name = EXTENSIONS.KHR_MATERIALS_IRIDESCENCE; } getMaterialType( materialIndex ) { const parser = this.parser; const materialDef = parser.json.materials[ materialIndex ]; if ( ! materialDef.extensions || ! materialDef.extensions[ this.name ] ) return null; return MeshPhysicalMaterial; } extendMaterialParams( materialIndex, materialParams ) { const parser = this.parser; const materialDef = parser.json.materials[ materialIndex ]; if ( ! materialDef.extensions || ! materialDef.extensions[ this.name ] ) { return Promise.resolve(); } const pending = []; const extension = materialDef.extensions[ this.name ]; if ( extension.iridescenceFactor !== undefined ) { materialParams.iridescence = extension.iridescenceFactor; } if ( extension.iridescenceTexture !== undefined ) { pending.push( parser.assignTexture( materialParams, 'iridescenceMap', extension.iridescenceTexture ) ); } if ( extension.iridescenceIor !== undefined ) { materialParams.iridescenceIOR = extension.iridescenceIor; } if ( materialParams.iridescenceThicknessRange === undefined ) { materialParams.iridescenceThicknessRange = [ 100, 400 ]; } if ( extension.iridescenceThicknessMinimum !== undefined ) { materialParams.iridescenceThicknessRange[ 0 ] = extension.iridescenceThicknessMinimum; } if ( extension.iridescenceThicknessMaximum !== undefined ) { materialParams.iridescenceThicknessRange[ 1 ] = extension.iridescenceThicknessMaximum; } if ( extension.iridescenceThicknessTexture !== undefined ) { pending.push( parser.assignTexture( materialParams, 'iridescenceThicknessMap', extension.iridescenceThicknessTexture ) ); } return Promise.all( pending ); } } /** * Sheen Materials Extension * * Specification: https://github.com/KhronosGroup/glTF/tree/main/extensions/2.0/Khronos/KHR_materials_sheen */ class GLTFMaterialsSheenExtension { constructor( parser ) { this.parser = parser; this.name = EXTENSIONS.KHR_MATERIALS_SHEEN; } getMaterialType( materialIndex ) { const parser = this.parser; const materialDef = parser.json.materials[ materialIndex ]; if ( ! materialDef.extensions || ! materialDef.extensions[ this.name ] ) return null; return MeshPhysicalMaterial; } extendMaterialParams( materialIndex, materialParams ) { const parser = this.parser; const materialDef = parser.json.materials[ materialIndex ]; if ( ! materialDef.extensions || ! materialDef.extensions[ this.name ] ) { return Promise.resolve(); } const pending = []; materialParams.sheenColor = new Color( 0, 0, 0 ); materialParams.sheenRoughness = 0; materialParams.sheen = 1; const extension = materialDef.extensions[ this.name ]; if ( extension.sheenColorFactor !== undefined ) { const colorFactor = extension.sheenColorFactor; materialParams.sheenColor.setRGB( colorFactor[ 0 ], colorFactor[ 1 ], colorFactor[ 2 ], LinearSRGBColorSpace ); } if ( extension.sheenRoughnessFactor !== undefined ) { materialParams.sheenRoughness = extension.sheenRoughnessFactor; } if ( extension.sheenColorTexture !== undefined ) { pending.push( parser.assignTexture( materialParams, 'sheenColorMap', extension.sheenColorTexture, SRGBColorSpace ) ); } if ( extension.sheenRoughnessTexture !== undefined ) { pending.push( parser.assignTexture( materialParams, 'sheenRoughnessMap', extension.sheenRoughnessTexture ) ); } return Promise.all( pending ); } } /** * Transmission Materials Extension * * Specification: https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Khronos/KHR_materials_transmission * Draft: https://github.com/KhronosGroup/glTF/pull/1698 */ class GLTFMaterialsTransmissionExtension { constructor( parser ) { this.parser = parser; this.name = EXTENSIONS.KHR_MATERIALS_TRANSMISSION; } getMaterialType( materialIndex ) { const parser = this.parser; const materialDef = parser.json.materials[ materialIndex ]; if ( ! materialDef.extensions || ! materialDef.extensions[ this.name ] ) return null; return MeshPhysicalMaterial; } extendMaterialParams( materialIndex, materialParams ) { const parser = this.parser; const materialDef = parser.json.materials[ materialIndex ]; if ( ! materialDef.extensions || ! materialDef.extensions[ this.name ] ) { return Promise.resolve(); } const pending = []; const extension = materialDef.extensions[ this.name ]; if ( extension.transmissionFactor !== undefined ) { materialParams.transmission = extension.transmissionFactor; } if ( extension.transmissionTexture !== undefined ) { pending.push( parser.assignTexture( materialParams, 'transmissionMap', extension.transmissionTexture ) ); } return Promise.all( pending ); } } /** * Materials Volume Extension * * Specification: https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Khronos/KHR_materials_volume */ class GLTFMaterialsVolumeExtension { constructor( parser ) { this.parser = parser; this.name = EXTENSIONS.KHR_MATERIALS_VOLUME; } getMaterialType( materialIndex ) { const parser = this.parser; const materialDef = parser.json.materials[ materialIndex ]; if ( ! materialDef.extensions || ! materialDef.extensions[ this.name ] ) return null; return MeshPhysicalMaterial; } extendMaterialParams( materialIndex, materialParams ) { const parser = this.parser; const materialDef = parser.json.materials[ materialIndex ]; if ( ! materialDef.extensions || ! materialDef.extensions[ this.name ] ) { return Promise.resolve(); } const pending = []; const extension = materialDef.extensions[ this.name ]; materialParams.thickness = extension.thicknessFactor !== undefined ? extension.thicknessFactor : 0; if ( extension.thicknessTexture !== undefined ) { pending.push( parser.assignTexture( materialParams, 'thicknessMap', extension.thicknessTexture ) ); } materialParams.attenuationDistance = extension.attenuationDistance || Infinity; const colorArray = extension.attenuationColor || [ 1, 1, 1 ]; materialParams.attenuationColor = new Color().setRGB( colorArray[ 0 ], colorArray[ 1 ], colorArray[ 2 ], LinearSRGBColorSpace ); return Promise.all( pending ); } } /** * Materials ior Extension * * Specification: https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Khronos/KHR_materials_ior */ class GLTFMaterialsIorExtension { constructor( parser ) { this.parser = parser; this.name = EXTENSIONS.KHR_MATERIALS_IOR; } getMaterialType( materialIndex ) { const parser = this.parser; const materialDef = parser.json.materials[ materialIndex ]; if ( ! materialDef.extensions || ! materialDef.extensions[ this.name ] ) return null; return MeshPhysicalMaterial; } extendMaterialParams( materialIndex, materialParams ) { const parser = this.parser; const materialDef = parser.json.materials[ materialIndex ]; if ( ! materialDef.extensions || ! materialDef.extensions[ this.name ] ) { return Promise.resolve(); } const extension = materialDef.extensions[ this.name ]; materialParams.ior = extension.ior !== undefined ? extension.ior : 1.5; return Promise.resolve(); } } /** * Materials specular Extension * * Specification: https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Khronos/KHR_materials_specular */ class GLTFMaterialsSpecularExtension { constructor( parser ) { this.parser = parser; this.name = EXTENSIONS.KHR_MATERIALS_SPECULAR; } getMaterialType( materialIndex ) { const parser = this.parser; const materialDef = parser.json.materials[ materialIndex ]; if ( ! materialDef.extensions || ! materialDef.extensions[ this.name ] ) return null; return MeshPhysicalMaterial; } extendMaterialParams( materialIndex, materialParams ) { const parser = this.parser; const materialDef = parser.json.materials[ materialIndex ]; if ( ! materialDef.extensions || ! materialDef.extensions[ this.name ] ) { return Promise.resolve(); } const pending = []; const extension = materialDef.extensions[ this.name ]; materialParams.specularIntensity = extension.specularFactor !== undefined ? extension.specularFactor : 1.0; if ( extension.specularTexture !== undefined ) { pending.push( parser.assignTexture( materialParams, 'specularIntensityMap', extension.specularTexture ) ); } const colorArray = extension.specularColorFactor || [ 1, 1, 1 ]; materialParams.specularColor = new Color().setRGB( colorArray[ 0 ], colorArray[ 1 ], colorArray[ 2 ], LinearSRGBColorSpace ); if ( extension.specularColorTexture !== undefined ) { pending.push( parser.assignTexture( materialParams, 'specularColorMap', extension.specularColorTexture, SRGBColorSpace ) ); } return Promise.all( pending ); } } /** * Materials bump Extension * * Specification: https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Khronos/EXT_materials_bump */ class GLTFMaterialsBumpExtension { constructor( parser ) { this.parser = parser; this.name = EXTENSIONS.EXT_MATERIALS_BUMP; } getMaterialType( materialIndex ) { const parser = this.parser; const materialDef = parser.json.materials[ materialIndex ]; if ( ! materialDef.extensions || ! materialDef.extensions[ this.name ] ) return null; return MeshPhysicalMaterial; } extendMaterialParams( materialIndex, materialParams ) { const parser = this.parser; const materialDef = parser.json.materials[ materialIndex ]; if ( ! materialDef.extensions || ! materialDef.extensions[ this.name ] ) { return Promise.resolve(); } const pending = []; const extension = materialDef.extensions[ this.name ]; materialParams.bumpScale = extension.bumpFactor !== undefined ? extension.bumpFactor : 1.0; if ( extension.bumpTexture !== undefined ) { pending.push( parser.assignTexture( materialParams, 'bumpMap', extension.bumpTexture ) ); } return Promise.all( pending ); } } /** * Materials anisotropy Extension * * Specification: https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Khronos/KHR_materials_anisotropy */ class GLTFMaterialsAnisotropyExtension { constructor( parser ) { this.parser = parser; this.name = EXTENSIONS.KHR_MATERIALS_ANISOTROPY; } getMaterialType( materialIndex ) { const parser = this.parser; const materialDef = parser.json.materials[ materialIndex ]; if ( ! materialDef.extensions || ! materialDef.extensions[ this.name ] ) return null; return MeshPhysicalMaterial; } extendMaterialParams( materialIndex, materialParams ) { const parser = this.parser; const materialDef = parser.json.materials[ materialIndex ]; if ( ! materialDef.extensions || ! materialDef.extensions[ this.name ] ) { return Promise.resolve(); } const pending = []; const extension = materialDef.extensions[ this.name ]; if ( extension.anisotropyStrength !== undefined ) { materialParams.anisotropy = extension.anisotropyStrength; } if ( extension.anisotropyRotation !== undefined ) { materialParams.anisotropyRotation = extension.anisotropyRotation; } if ( extension.anisotropyTexture !== undefined ) { pending.push( parser.assignTexture( materialParams, 'anisotropyMap', extension.anisotropyTexture ) ); } return Promise.all( pending ); } } /** * BasisU Texture Extension * * Specification: https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Khronos/KHR_texture_basisu */ class GLTFTextureBasisUExtension { constructor( parser ) { this.parser = parser; this.name = EXTENSIONS.KHR_TEXTURE_BASISU; } loadTexture( textureIndex ) { const parser = this.parser; const json = parser.json; const textureDef = json.textures[ textureIndex ]; if ( ! textureDef.extensions || ! textureDef.extensions[ this.name ] ) { return null; } const extension = textureDef.extensions[ this.name ]; const loader = parser.options.ktx2Loader; if ( ! loader ) { if ( json.extensionsRequired && json.extensionsRequired.indexOf( this.name ) >= 0 ) { throw new Error( 'THREE.GLTFLoader: setKTX2Loader must be called before loading KTX2 textures' ); } else { // Assumes that the extension is optional and that a fallback texture is present return null; } } return parser.loadTextureImage( textureIndex, extension.source, loader ); } } /** * WebP Texture Extension * * Specification: https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Vendor/EXT_texture_webp */ class GLTFTextureWebPExtension { constructor( parser ) { this.parser = parser; this.name = EXTENSIONS.EXT_TEXTURE_WEBP; this.isSupported = null; } loadTexture( textureIndex ) { const name = this.name; const parser = this.parser; const json = parser.json; const textureDef = json.textures[ textureIndex ]; if ( ! textureDef.extensions || ! textureDef.extensions[ name ] ) { return null; } const extension = textureDef.extensions[ name ]; const source = json.images[ extension.source ]; let loader = parser.textureLoader; if ( source.uri ) { const handler = parser.options.manager.getHandler( source.uri ); if ( handler !== null ) loader = handler; } return this.detectSupport().then( function ( isSupported ) { if ( isSupported ) return parser.loadTextureImage( textureIndex, extension.source, loader ); if ( json.extensionsRequired && json.extensionsRequired.indexOf( name ) >= 0 ) { throw new Error( 'THREE.GLTFLoader: WebP required by asset but unsupported.' ); } // Fall back to PNG or JPEG. return parser.loadTexture( textureIndex ); } ); } detectSupport() { if ( ! this.isSupported ) { this.isSupported = new Promise( function ( resolve ) { const image = new Image(); // Lossy test image. Support for lossy images doesn't guarantee support for all // WebP images, unfortunately. image.src = ''; image.onload = image.onerror = function () { resolve( image.height === 1 ); }; } ); } return this.isSupported; } } /** * AVIF Texture Extension * * Specification: https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Vendor/EXT_texture_avif */ class GLTFTextureAVIFExtension { constructor( parser ) { this.parser = parser; this.name = EXTENSIONS.EXT_TEXTURE_AVIF; this.isSupported = null; } loadTexture( textureIndex ) { const name = this.name; const parser = this.parser; const json = parser.json; const textureDef = json.textures[ textureIndex ]; if ( ! textureDef.extensions || ! textureDef.extensions[ name ] ) { return null; } const extension = textureDef.extensions[ name ]; const source = json.images[ extension.source ]; let loader = parser.textureLoader; if ( source.uri ) { const handler = parser.options.manager.getHandler( source.uri ); if ( handler !== null ) loader = handler; } return this.detectSupport().then( function ( isSupported ) { if ( isSupported ) return parser.loadTextureImage( textureIndex, extension.source, loader ); if ( json.extensionsRequired && json.extensionsRequired.indexOf( name ) >= 0 ) { throw new Error( 'THREE.GLTFLoader: AVIF required by asset but unsupported.' ); } // Fall back to PNG or JPEG. return parser.loadTexture( textureIndex ); } ); } detectSupport() { if ( ! this.isSupported ) { this.isSupported = new Promise( function ( resolve ) { const image = new Image(); // Lossy test image. image.src = ''; image.onload = image.onerror = function () { resolve( image.height === 1 ); }; } ); } return this.isSupported; } } /** * meshopt BufferView Compression Extension * * Specification: https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Vendor/EXT_meshopt_compression */ class GLTFMeshoptCompression { constructor( parser ) { this.name = EXTENSIONS.EXT_MESHOPT_COMPRESSION; this.parser = parser; } loadBufferView( index ) { const json = this.parser.json; const bufferView = json.bufferViews[ index ]; if ( bufferView.extensions && bufferView.extensions[ this.name ] ) { const extensionDef = bufferView.extensions[ this.name ]; const buffer = this.parser.getDependency( 'buffer', extensionDef.buffer ); const decoder = this.parser.options.meshoptDecoder; if ( ! decoder || ! decoder.supported ) { if ( json.extensionsRequired && json.extensionsRequired.indexOf( this.name ) >= 0 ) { throw new Error( 'THREE.GLTFLoader: setMeshoptDecoder must be called before loading compressed files' ); } else { // Assumes that the extension is optional and that fallback buffer data is present return null; } } return buffer.then( function ( res ) { const byteOffset = extensionDef.byteOffset || 0; const byteLength = extensionDef.byteLength || 0; const count = extensionDef.count; const stride = extensionDef.byteStride; const source = new Uint8Array( res, byteOffset, byteLength ); if ( decoder.decodeGltfBufferAsync ) { return decoder.decodeGltfBufferAsync( count, stride, source, extensionDef.mode, extensionDef.filter ).then( function ( res ) { return res.buffer; } ); } else { // Support for MeshoptDecoder 0.18 or earlier, without decodeGltfBufferAsync return decoder.ready.then( function () { const result = new ArrayBuffer( count * stride ); decoder.decodeGltfBuffer( new Uint8Array( result ), count, stride, source, extensionDef.mode, extensionDef.filter ); return result; } ); } } ); } else { return null; } } } /** * GPU Instancing Extension * * Specification: https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Vendor/EXT_mesh_gpu_instancing * */ class GLTFMeshGpuInstancing { constructor( parser ) { this.name = EXTENSIONS.EXT_MESH_GPU_INSTANCING; this.parser = parser; } createNodeMesh( nodeIndex ) { const json = this.parser.json; const nodeDef = json.nodes[ nodeIndex ]; if ( ! nodeDef.extensions || ! nodeDef.extensions[ this.name ] || nodeDef.mesh === undefined ) { return null; } const meshDef = json.meshes[ nodeDef.mesh ]; // No Points or Lines + Instancing support yet for ( const primitive of meshDef.primitives ) { if ( primitive.mode !== WEBGL_CONSTANTS.TRIANGLES && primitive.mode !== WEBGL_CONSTANTS.TRIANGLE_STRIP && primitive.mode !== WEBGL_CONSTANTS.TRIANGLE_FAN && primitive.mode !== undefined ) { return null; } } const extensionDef = nodeDef.extensions[ this.name ]; const attributesDef = extensionDef.attributes; // @TODO: Can we support InstancedMesh + SkinnedMesh? const pending = []; const attributes = {}; for ( const key in attributesDef ) { pending.push( this.parser.getDependency( 'accessor', attributesDef[ key ] ).then( accessor => { attributes[ key ] = accessor; return attributes[ key ]; } ) ); } if ( pending.length < 1 ) { return null; } pending.push( this.parser.createNodeMesh( nodeIndex ) ); return Promise.all( pending ).then( results => { const nodeObject = results.pop(); const meshes = nodeObject.isGroup ? nodeObject.children : [ nodeObject ]; const count = results[ 0 ].count; // All attribute counts should be same const instancedMeshes = []; for ( const mesh of meshes ) { // Temporal variables const m = new Matrix4(); const p = new Vector3(); const q = new Quaternion(); const s = new Vector3( 1, 1, 1 ); const instancedMesh = new InstancedMesh( mesh.geometry, mesh.material, count ); for ( let i = 0; i < count; i ++ ) { if ( attributes.TRANSLATION ) { p.fromBufferAttribute( attributes.TRANSLATION, i ); } if ( attributes.ROTATION ) { q.fromBufferAttribute( attributes.ROTATION, i ); } if ( attributes.SCALE ) { s.fromBufferAttribute( attributes.SCALE, i ); } instancedMesh.setMatrixAt( i, m.compose( p, q, s ) ); } // Add instance attributes to the geometry, excluding TRS. for ( const attributeName in attributes ) { if ( attributeName === '_COLOR_0' ) { const attr = attributes[ attributeName ]; instancedMesh.instanceColor = new InstancedBufferAttribute( attr.array, attr.itemSize, attr.normalized ); } else if ( attributeName !== 'TRANSLATION' && attributeName !== 'ROTATION' && attributeName !== 'SCALE' ) { mesh.geometry.setAttribute( attributeName, attributes[ attributeName ] ); } } // Just in case Object3D.prototype.copy.call( instancedMesh, mesh ); this.parser.assignFinalMaterial( instancedMesh ); instancedMeshes.push( instancedMesh ); } if ( nodeObject.isGroup ) { nodeObject.clear(); nodeObject.add( ... instancedMeshes ); return nodeObject; } return instancedMeshes[ 0 ]; } ); } } /* BINARY EXTENSION */ const BINARY_EXTENSION_HEADER_MAGIC = 'glTF'; const BINARY_EXTENSION_HEADER_LENGTH = 12; const BINARY_EXTENSION_CHUNK_TYPES = { JSON: 0x4E4F534A, BIN: 0x004E4942 }; class GLTFBinaryExtension { constructor( data ) { this.name = EXTENSIONS.KHR_BINARY_GLTF; this.content = null; this.body = null; const headerView = new DataView( data, 0, BINARY_EXTENSION_HEADER_LENGTH ); const textDecoder = new TextDecoder(); this.header = { magic: textDecoder.decode( new Uint8Array( data.slice( 0, 4 ) ) ), version: headerView.getUint32( 4, true ), length: headerView.getUint32( 8, true ) }; if ( this.header.magic !== BINARY_EXTENSION_HEADER_MAGIC ) { throw new Error( 'THREE.GLTFLoader: Unsupported glTF-Binary header.' ); } else if ( this.header.version < 2.0 ) { throw new Error( 'THREE.GLTFLoader: Legacy binary file detected.' ); } const chunkContentsLength = this.header.length - BINARY_EXTENSION_HEADER_LENGTH; const chunkView = new DataView( data, BINARY_EXTENSION_HEADER_LENGTH ); let chunkIndex = 0; while ( chunkIndex < chunkContentsLength ) { const chunkLength = chunkView.getUint32( chunkIndex, true ); chunkIndex += 4; const chunkType = chunkView.getUint32( chunkIndex, true ); chunkIndex += 4; if ( chunkType === BINARY_EXTENSION_CHUNK_TYPES.JSON ) { const contentArray = new Uint8Array( data, BINARY_EXTENSION_HEADER_LENGTH + chunkIndex, chunkLength ); this.content = textDecoder.decode( contentArray ); } else if ( chunkType === BINARY_EXTENSION_CHUNK_TYPES.BIN ) { const byteOffset = BINARY_EXTENSION_HEADER_LENGTH + chunkIndex; this.body = data.slice( byteOffset, byteOffset + chunkLength ); } // Clients must ignore chunks with unknown types. chunkIndex += chunkLength; } if ( this.content === null ) { throw new Error( 'THREE.GLTFLoader: JSON content not found.' ); } } } /** * DRACO Mesh Compression Extension * * Specification: https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Khronos/KHR_draco_mesh_compression */ class GLTFDracoMeshCompressionExtension { constructor( json, dracoLoader ) { if ( ! dracoLoader ) { throw new Error( 'THREE.GLTFLoader: No DRACOLoader instance provided.' ); } this.name = EXTENSIONS.KHR_DRACO_MESH_COMPRESSION; this.json = json; this.dracoLoader = dracoLoader; this.dracoLoader.preload(); } decodePrimitive( primitive, parser ) { const json = this.json; const dracoLoader = this.dracoLoader; const bufferViewIndex = primitive.extensions[ this.name ].bufferView; const gltfAttributeMap = primitive.extensions[ this.name ].attributes; const threeAttributeMap = {}; const attributeNormalizedMap = {}; const attributeTypeMap = {}; for ( const attributeName in gltfAttributeMap ) { const threeAttributeName = ATTRIBUTES[ attributeName ] || attributeName.toLowerCase(); threeAttributeMap[ threeAttributeName ] = gltfAttributeMap[ attributeName ]; } for ( const attributeName in primitive.attributes ) { const threeAttributeName = ATTRIBUTES[ attributeName ] || attributeName.toLowerCase(); if ( gltfAttributeMap[ attributeName ] !== undefined ) { const accessorDef = json.accessors[ primitive.attributes[ attributeName ] ]; const componentType = WEBGL_COMPONENT_TYPES[ accessorDef.componentType ]; attributeTypeMap[ threeAttributeName ] = componentType.name; attributeNormalizedMap[ threeAttributeName ] = accessorDef.normalized === true; } } return parser.getDependency( 'bufferView', bufferViewIndex ).then( function ( bufferView ) { return new Promise( function ( resolve, reject ) { dracoLoader.decodeDracoFile( bufferView, function ( geometry ) { for ( const attributeName in geometry.attributes ) { const attribute = geometry.attributes[ attributeName ]; const normalized = attributeNormalizedMap[ attributeName ]; if ( normalized !== undefined ) attribute.normalized = normalized; } resolve( geometry ); }, threeAttributeMap, attributeTypeMap, LinearSRGBColorSpace, reject ); } ); } ); } } /** * Texture Transform Extension * * Specification: https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Khronos/KHR_texture_transform */ class GLTFTextureTransformExtension { constructor() { this.name = EXTENSIONS.KHR_TEXTURE_TRANSFORM; } extendTexture( texture, transform ) { if ( ( transform.texCoord === undefined || transform.texCoord === texture.channel ) && transform.offset === undefined && transform.rotation === undefined && transform.scale === undefined ) { // See https://github.com/mrdoob/three.js/issues/21819. return texture; } texture = texture.clone(); if ( transform.texCoord !== undefined ) { texture.channel = transform.texCoord; } if ( transform.offset !== undefined ) { texture.offset.fromArray( transform.offset ); } if ( transform.rotation !== undefined ) { texture.rotation = transform.rotation; } if ( transform.scale !== undefined ) { texture.repeat.fromArray( transform.scale ); } texture.needsUpdate = true; return texture; } } /** * Mesh Quantization Extension * * Specification: https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Khronos/KHR_mesh_quantization */ class GLTFMeshQuantizationExtension { constructor() { this.name = EXTENSIONS.KHR_MESH_QUANTIZATION; } } /*********************************/ /********** INTERPOLATION ********/ /*********************************/ // Spline Interpolation // Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#appendix-c-spline-interpolation class GLTFCubicSplineInterpolant extends Interpolant { constructor( parameterPositions, sampleValues, sampleSize, resultBuffer ) { super( parameterPositions, sampleValues, sampleSize, resultBuffer ); } copySampleValue_( index ) { // Copies a sample value to the result buffer. See description of glTF // CUBICSPLINE values layout in interpolate_() function below. const result = this.resultBuffer, values = this.sampleValues, valueSize = this.valueSize, offset = index * valueSize * 3 + valueSize; for ( let i = 0; i !== valueSize; i ++ ) { result[ i ] = values[ offset + i ]; } return result; } interpolate_( i1, t0, t, t1 ) { const result = this.resultBuffer; const values = this.sampleValues; const stride = this.valueSize; const stride2 = stride * 2; const stride3 = stride * 3; const td = t1 - t0; const p = ( t - t0 ) / td; const pp = p * p; const ppp = pp * p; const offset1 = i1 * stride3; const offset0 = offset1 - stride3; const s2 = - 2 * ppp + 3 * pp; const s3 = ppp - pp; const s0 = 1 - s2; const s1 = s3 - pp + p; // Layout of keyframe output values for CUBICSPLINE animations: // [ inTangent_1, splineVertex_1, outTangent_1, inTangent_2, splineVertex_2, ... ] for ( let i = 0; i !== stride; i ++ ) { const p0 = values[ offset0 + i + stride ]; // splineVertex_k const m0 = values[ offset0 + i + stride2 ] * td; // outTangent_k * (t_k+1 - t_k) const p1 = values[ offset1 + i + stride ]; // splineVertex_k+1 const m1 = values[ offset1 + i ] * td; // inTangent_k+1 * (t_k+1 - t_k) result[ i ] = s0 * p0 + s1 * m0 + s2 * p1 + s3 * m1; } return result; } } const _q = new Quaternion(); class GLTFCubicSplineQuaternionInterpolant extends GLTFCubicSplineInterpolant { interpolate_( i1, t0, t, t1 ) { const result = super.interpolate_( i1, t0, t, t1 ); _q.fromArray( result ).normalize().toArray( result ); return result; } } /*********************************/ /********** INTERNALS ************/ /*********************************/ /* CONSTANTS */ const WEBGL_CONSTANTS = { FLOAT: 5126, //FLOAT_MAT2: 35674, FLOAT_MAT3: 35675, FLOAT_MAT4: 35676, FLOAT_VEC2: 35664, FLOAT_VEC3: 35665, FLOAT_VEC4: 35666, LINEAR: 9729, REPEAT: 10497, SAMPLER_2D: 35678, POINTS: 0, LINES: 1, LINE_LOOP: 2, LINE_STRIP: 3, TRIANGLES: 4, TRIANGLE_STRIP: 5, TRIANGLE_FAN: 6, UNSIGNED_BYTE: 5121, UNSIGNED_SHORT: 5123 }; const WEBGL_COMPONENT_TYPES = { 5120: Int8Array, 5121: Uint8Array, 5122: Int16Array, 5123: Uint16Array, 5125: Uint32Array, 5126: Float32Array }; const WEBGL_FILTERS = { 9728: NearestFilter, 9729: LinearFilter, 9984: NearestMipmapNearestFilter, 9985: LinearMipmapNearestFilter, 9986: NearestMipmapLinearFilter, 9987: LinearMipmapLinearFilter }; const WEBGL_WRAPPINGS = { 33071: ClampToEdgeWrapping, 33648: MirroredRepeatWrapping, 10497: RepeatWrapping }; const WEBGL_TYPE_SIZES = { 'SCALAR': 1, 'VEC2': 2, 'VEC3': 3, 'VEC4': 4, 'MAT2': 4, 'MAT3': 9, 'MAT4': 16 }; const ATTRIBUTES = { POSITION: 'position', NORMAL: 'normal', TANGENT: 'tangent', TEXCOORD_0: 'uv', TEXCOORD_1: 'uv1', TEXCOORD_2: 'uv2', TEXCOORD_3: 'uv3', COLOR_0: 'color', WEIGHTS_0: 'skinWeight', JOINTS_0: 'skinIndex', }; const PATH_PROPERTIES = { scale: 'scale', translation: 'position', rotation: 'quaternion', weights: 'morphTargetInfluences' }; const INTERPOLATION = { CUBICSPLINE: undefined, // We use a custom interpolant (GLTFCubicSplineInterpolation) for CUBICSPLINE tracks. Each // keyframe track will be initialized with a default interpolation type, then modified. LINEAR: InterpolateLinear, STEP: InterpolateDiscrete }; const ALPHA_MODES = { OPAQUE: 'OPAQUE', MASK: 'MASK', BLEND: 'BLEND' }; /** * Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#default-material */ function createDefaultMaterial( cache ) { if ( cache[ 'DefaultMaterial' ] === undefined ) { cache[ 'DefaultMaterial' ] = new MeshStandardMaterial( { color: 0xFFFFFF, emissive: 0x000000, metalness: 1, roughness: 1, transparent: false, depthTest: true, side: FrontSide } ); } return cache[ 'DefaultMaterial' ]; } function addUnknownExtensionsToUserData( knownExtensions, object, objectDef ) { // Add unknown glTF extensions to an object's userData. for ( const name in objectDef.extensions ) { if ( knownExtensions[ name ] === undefined ) { object.userData.gltfExtensions = object.userData.gltfExtensions || {}; object.userData.gltfExtensions[ name ] = objectDef.extensions[ name ]; } } } /** * @param {Object3D|Material|BufferGeometry} object * @param {GLTF.definition} gltfDef */ function assignExtrasToUserData( object, gltfDef ) { if ( gltfDef.extras !== undefined ) { if ( typeof gltfDef.extras === 'object' ) { Object.assign( object.userData, gltfDef.extras ); } else { console.warn( 'THREE.GLTFLoader: Ignoring primitive type .extras, ' + gltfDef.extras ); } } } /** * Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#morph-targets * * @param {BufferGeometry} geometry * @param {Array} targets * @param {GLTFParser} parser * @return {Promise} */ function addMorphTargets( geometry, targets, parser ) { let hasMorphPosition = false; let hasMorphNormal = false; let hasMorphColor = false; for ( let i = 0, il = targets.length; i < il; i ++ ) { const target = targets[ i ]; if ( target.POSITION !== undefined ) hasMorphPosition = true; if ( target.NORMAL !== undefined ) hasMorphNormal = true; if ( target.COLOR_0 !== undefined ) hasMorphColor = true; if ( hasMorphPosition && hasMorphNormal && hasMorphColor ) break; } if ( ! hasMorphPosition && ! hasMorphNormal && ! hasMorphColor ) return Promise.resolve( geometry ); const pendingPositionAccessors = []; const pendingNormalAccessors = []; const pendingColorAccessors = []; for ( let i = 0, il = targets.length; i < il; i ++ ) { const target = targets[ i ]; if ( hasMorphPosition ) { const pendingAccessor = target.POSITION !== undefined ? parser.getDependency( 'accessor', target.POSITION ) : geometry.attributes.position; pendingPositionAccessors.push( pendingAccessor ); } if ( hasMorphNormal ) { const pendingAccessor = target.NORMAL !== undefined ? parser.getDependency( 'accessor', target.NORMAL ) : geometry.attributes.normal; pendingNormalAccessors.push( pendingAccessor ); } if ( hasMorphColor ) { const pendingAccessor = target.COLOR_0 !== undefined ? parser.getDependency( 'accessor', target.COLOR_0 ) : geometry.attributes.color; pendingColorAccessors.push( pendingAccessor ); } } return Promise.all( [ Promise.all( pendingPositionAccessors ), Promise.all( pendingNormalAccessors ), Promise.all( pendingColorAccessors ) ] ).then( function ( accessors ) { const morphPositions = accessors[ 0 ]; const morphNormals = accessors[ 1 ]; const morphColors = accessors[ 2 ]; if ( hasMorphPosition ) geometry.morphAttributes.position = morphPositions; if ( hasMorphNormal ) geometry.morphAttributes.normal = morphNormals; if ( hasMorphColor ) geometry.morphAttributes.color = morphColors; geometry.morphTargetsRelative = true; return geometry; } ); } /** * @param {Mesh} mesh * @param {GLTF.Mesh} meshDef */ function updateMorphTargets( mesh, meshDef ) { mesh.updateMorphTargets(); if ( meshDef.weights !== undefined ) { for ( let i = 0, il = meshDef.weights.length; i < il; i ++ ) { mesh.morphTargetInfluences[ i ] = meshDef.weights[ i ]; } } // .extras has user-defined data, so check that .extras.targetNames is an array. if ( meshDef.extras && Array.isArray( meshDef.extras.targetNames ) ) { const targetNames = meshDef.extras.targetNames; if ( mesh.morphTargetInfluences.length === targetNames.length ) { mesh.morphTargetDictionary = {}; for ( let i = 0, il = targetNames.length; i < il; i ++ ) { mesh.morphTargetDictionary[ targetNames[ i ] ] = i; } } else { console.warn( 'THREE.GLTFLoader: Invalid extras.targetNames length. Ignoring names.' ); } } } function createPrimitiveKey( primitiveDef ) { let geometryKey; const dracoExtension = primitiveDef.extensions && primitiveDef.extensions[ EXTENSIONS.KHR_DRACO_MESH_COMPRESSION ]; if ( dracoExtension ) { geometryKey = 'draco:' + dracoExtension.bufferView + ':' + dracoExtension.indices + ':' + createAttributesKey( dracoExtension.attributes ); } else { geometryKey = primitiveDef.indices + ':' + createAttributesKey( primitiveDef.attributes ) + ':' + primitiveDef.mode; } if ( primitiveDef.targets !== undefined ) { for ( let i = 0, il = primitiveDef.targets.length; i < il; i ++ ) { geometryKey += ':' + createAttributesKey( primitiveDef.targets[ i ] ); } } return geometryKey; } function createAttributesKey( attributes ) { let attributesKey = ''; const keys = Object.keys( attributes ).sort(); for ( let i = 0, il = keys.length; i < il; i ++ ) { attributesKey += keys[ i ] + ':' + attributes[ keys[ i ] ] + ';'; } return attributesKey; } function getNormalizedComponentScale( constructor ) { // Reference: // https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Khronos/KHR_mesh_quantization#encoding-quantized-data switch ( constructor ) { case Int8Array: return 1 / 127; case Uint8Array: return 1 / 255; case Int16Array: return 1 / 32767; case Uint16Array: return 1 / 65535; default: throw new Error( 'THREE.GLTFLoader: Unsupported normalized accessor component type.' ); } } function getImageURIMimeType( uri ) { if ( uri.search( /\.jpe?g($|\?)/i ) > 0 || uri.search( /^data\:image\/jpeg/ ) === 0 ) return 'image/jpeg'; if ( uri.search( /\.webp($|\?)/i ) > 0 || uri.search( /^data\:image\/webp/ ) === 0 ) return 'image/webp'; return 'image/png'; } const _identityMatrix = new Matrix4(); /* GLTF PARSER */ class GLTFParser { constructor( json = {}, options = {} ) { this.json = json; this.extensions = {}; this.plugins = {}; this.options = options; // loader object cache this.cache = new GLTFRegistry(); // associations between Three.js objects and glTF elements this.associations = new Map(); // BufferGeometry caching this.primitiveCache = {}; // Node cache this.nodeCache = {}; // Object3D instance caches this.meshCache = { refs: {}, uses: {} }; this.cameraCache = { refs: {}, uses: {} }; this.lightCache = { refs: {}, uses: {} }; this.sourceCache = {}; this.textureCache = {}; // Track node names, to ensure no duplicates this.nodeNamesUsed = {}; // Use an ImageBitmapLoader if imageBitmaps are supported. Moves much of the // expensive work of uploading a texture to the GPU off the main thread. let isSafari = false; let isFirefox = false; let firefoxVersion = - 1; if ( typeof navigator !== 'undefined' ) { isSafari = /^((?!chrome|android).)*safari/i.test( navigator.userAgent ) === true; isFirefox = navigator.userAgent.indexOf( 'Firefox' ) > - 1; firefoxVersion = isFirefox ? navigator.userAgent.match( /Firefox\/([0-9]+)\./ )[ 1 ] : - 1; } if ( typeof createImageBitmap === 'undefined' || isSafari || ( isFirefox && firefoxVersion < 98 ) ) { this.textureLoader = new TextureLoader( this.options.manager ); } else { this.textureLoader = new ImageBitmapLoader( this.options.manager ); } this.textureLoader.setCrossOrigin( this.options.crossOrigin ); this.textureLoader.setRequestHeader( this.options.requestHeader ); this.fileLoader = new FileLoader( this.options.manager ); this.fileLoader.setResponseType( 'arraybuffer' ); if ( this.options.crossOrigin === 'use-credentials' ) { this.fileLoader.setWithCredentials( true ); } } setExtensions( extensions ) { this.extensions = extensions; } setPlugins( plugins ) { this.plugins = plugins; } parse( onLoad, onError ) { const parser = this; const json = this.json; const extensions = this.extensions; // Clear the loader cache this.cache.removeAll(); this.nodeCache = {}; // Mark the special nodes/meshes in json for efficient parse this._invokeAll( function ( ext ) { return ext._markDefs && ext._markDefs(); } ); Promise.all( this._invokeAll( function ( ext ) { return ext.beforeRoot && ext.beforeRoot(); } ) ).then( function () { return Promise.all( [ parser.getDependencies( 'scene' ), parser.getDependencies( 'animation' ), parser.getDependencies( 'camera' ), ] ); } ).then( function ( dependencies ) { const result = { scene: dependencies[ 0 ][ json.scene || 0 ], scenes: dependencies[ 0 ], animations: dependencies[ 1 ], cameras: dependencies[ 2 ], asset: json.asset, parser: parser, userData: {} }; addUnknownExtensionsToUserData( extensions, result, json ); assignExtrasToUserData( result, json ); return Promise.all( parser._invokeAll( function ( ext ) { return ext.afterRoot && ext.afterRoot( result ); } ) ).then( function () { for ( const scene of result.scenes ) { scene.updateMatrixWorld(); } onLoad( result ); } ); } ).catch( onError ); } /** * Marks the special nodes/meshes in json for efficient parse. */ _markDefs() { const nodeDefs = this.json.nodes || []; const skinDefs = this.json.skins || []; const meshDefs = this.json.meshes || []; // Nothing in the node definition indicates whether it is a Bone or an // Object3D. Use the skins' joint references to mark bones. for ( let skinIndex = 0, skinLength = skinDefs.length; skinIndex < skinLength; skinIndex ++ ) { const joints = skinDefs[ skinIndex ].joints; for ( let i = 0, il = joints.length; i < il; i ++ ) { nodeDefs[ joints[ i ] ].isBone = true; } } // Iterate over all nodes, marking references to shared resources, // as well as skeleton joints. for ( let nodeIndex = 0, nodeLength = nodeDefs.length; nodeIndex < nodeLength; nodeIndex ++ ) { const nodeDef = nodeDefs[ nodeIndex ]; if ( nodeDef.mesh !== undefined ) { this._addNodeRef( this.meshCache, nodeDef.mesh ); // Nothing in the mesh definition indicates whether it is // a SkinnedMesh or Mesh. Use the node's mesh reference // to mark SkinnedMesh if node has skin. if ( nodeDef.skin !== undefined ) { meshDefs[ nodeDef.mesh ].isSkinnedMesh = true; } } if ( nodeDef.camera !== undefined ) { this._addNodeRef( this.cameraCache, nodeDef.camera ); } } } /** * Counts references to shared node / Object3D resources. These resources * can be reused, or "instantiated", at multiple nodes in the scene * hierarchy. Mesh, Camera, and Light instances are instantiated and must * be marked. Non-scenegraph resources (like Materials, Geometries, and * Textures) can be reused directly and are not marked here. * * Example: CesiumMilkTruck sample model reuses "Wheel" meshes. */ _addNodeRef( cache, index ) { if ( index === undefined ) return; if ( cache.refs[ index ] === undefined ) { cache.refs[ index ] = cache.uses[ index ] = 0; } cache.refs[ index ] ++; } /** Returns a reference to a shared resource, cloning it if necessary. */ _getNodeRef( cache, index, object ) { if ( cache.refs[ index ] <= 1 ) return object; const ref = object.clone(); // Propagates mappings to the cloned object, prevents mappings on the // original object from being lost. const updateMappings = ( original, clone ) => { const mappings = this.associations.get( original ); if ( mappings != null ) { this.associations.set( clone, mappings ); } for ( const [ i, child ] of original.children.entries() ) { updateMappings( child, clone.children[ i ] ); } }; updateMappings( object, ref ); ref.name += '_instance_' + ( cache.uses[ index ] ++ ); return ref; } _invokeOne( func ) { const extensions = Object.values( this.plugins ); extensions.push( this ); for ( let i = 0; i < extensions.length; i ++ ) { const result = func( extensions[ i ] ); if ( result ) return result; } return null; } _invokeAll( func ) { const extensions = Object.values( this.plugins ); extensions.unshift( this ); const pending = []; for ( let i = 0; i < extensions.length; i ++ ) { const result = func( extensions[ i ] ); if ( result ) pending.push( result ); } return pending; } /** * Requests the specified dependency asynchronously, with caching. * @param {string} type * @param {number} index * @return {Promise} */ getDependency( type, index ) { const cacheKey = type + ':' + index; let dependency = this.cache.get( cacheKey ); if ( ! dependency ) { switch ( type ) { case 'scene': dependency = this.loadScene( index ); break; case 'node': dependency = this._invokeOne( function ( ext ) { return ext.loadNode && ext.loadNode( index ); } ); break; case 'mesh': dependency = this._invokeOne( function ( ext ) { return ext.loadMesh && ext.loadMesh( index ); } ); break; case 'accessor': dependency = this.loadAccessor( index ); break; case 'bufferView': dependency = this._invokeOne( function ( ext ) { return ext.loadBufferView && ext.loadBufferView( index ); } ); break; case 'buffer': dependency = this.loadBuffer( index ); break; case 'material': dependency = this._invokeOne( function ( ext ) { return ext.loadMaterial && ext.loadMaterial( index ); } ); break; case 'texture': dependency = this._invokeOne( function ( ext ) { return ext.loadTexture && ext.loadTexture( index ); } ); break; case 'skin': dependency = this.loadSkin( index ); break; case 'animation': dependency = this._invokeOne( function ( ext ) { return ext.loadAnimation && ext.loadAnimation( index ); } ); break; case 'camera': dependency = this.loadCamera( index ); break; default: dependency = this._invokeOne( function ( ext ) { return ext != this && ext.getDependency && ext.getDependency( type, index ); } ); if ( ! dependency ) { throw new Error( 'Unknown type: ' + type ); } break; } this.cache.add( cacheKey, dependency ); } return dependency; } /** * Requests all dependencies of the specified type asynchronously, with caching. * @param {string} type * @return {Promise>} */ getDependencies( type ) { let dependencies = this.cache.get( type ); if ( ! dependencies ) { const parser = this; const defs = this.json[ type + ( type === 'mesh' ? 'es' : 's' ) ] || []; dependencies = Promise.all( defs.map( function ( def, index ) { return parser.getDependency( type, index ); } ) ); this.cache.add( type, dependencies ); } return dependencies; } /** * Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#buffers-and-buffer-views * @param {number} bufferIndex * @return {Promise} */ loadBuffer( bufferIndex ) { const bufferDef = this.json.buffers[ bufferIndex ]; const loader = this.fileLoader; if ( bufferDef.type && bufferDef.type !== 'arraybuffer' ) { throw new Error( 'THREE.GLTFLoader: ' + bufferDef.type + ' buffer type is not supported.' ); } // If present, GLB container is required to be the first buffer. if ( bufferDef.uri === undefined && bufferIndex === 0 ) { return Promise.resolve( this.extensions[ EXTENSIONS.KHR_BINARY_GLTF ].body ); } const options = this.options; return new Promise( function ( resolve, reject ) { loader.load( LoaderUtils.resolveURL( bufferDef.uri, options.path ), resolve, undefined, function () { reject( new Error( 'THREE.GLTFLoader: Failed to load buffer "' + bufferDef.uri + '".' ) ); } ); } ); } /** * Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#buffers-and-buffer-views * @param {number} bufferViewIndex * @return {Promise} */ loadBufferView( bufferViewIndex ) { const bufferViewDef = this.json.bufferViews[ bufferViewIndex ]; return this.getDependency( 'buffer', bufferViewDef.buffer ).then( function ( buffer ) { const byteLength = bufferViewDef.byteLength || 0; const byteOffset = bufferViewDef.byteOffset || 0; return buffer.slice( byteOffset, byteOffset + byteLength ); } ); } /** * Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#accessors * @param {number} accessorIndex * @return {Promise} */ loadAccessor( accessorIndex ) { const parser = this; const json = this.json; const accessorDef = this.json.accessors[ accessorIndex ]; if ( accessorDef.bufferView === undefined && accessorDef.sparse === undefined ) { const itemSize = WEBGL_TYPE_SIZES[ accessorDef.type ]; const TypedArray = WEBGL_COMPONENT_TYPES[ accessorDef.componentType ]; const normalized = accessorDef.normalized === true; const array = new TypedArray( accessorDef.count * itemSize ); return Promise.resolve( new BufferAttribute( array, itemSize, normalized ) ); } const pendingBufferViews = []; if ( accessorDef.bufferView !== undefined ) { pendingBufferViews.push( this.getDependency( 'bufferView', accessorDef.bufferView ) ); } else { pendingBufferViews.push( null ); } if ( accessorDef.sparse !== undefined ) { pendingBufferViews.push( this.getDependency( 'bufferView', accessorDef.sparse.indices.bufferView ) ); pendingBufferViews.push( this.getDependency( 'bufferView', accessorDef.sparse.values.bufferView ) ); } return Promise.all( pendingBufferViews ).then( function ( bufferViews ) { const bufferView = bufferViews[ 0 ]; const itemSize = WEBGL_TYPE_SIZES[ accessorDef.type ]; const TypedArray = WEBGL_COMPONENT_TYPES[ accessorDef.componentType ]; // For VEC3: itemSize is 3, elementBytes is 4, itemBytes is 12. const elementBytes = TypedArray.BYTES_PER_ELEMENT; const itemBytes = elementBytes * itemSize; const byteOffset = accessorDef.byteOffset || 0; const byteStride = accessorDef.bufferView !== undefined ? json.bufferViews[ accessorDef.bufferView ].byteStride : undefined; const normalized = accessorDef.normalized === true; let array, bufferAttribute; // The buffer is not interleaved if the stride is the item size in bytes. if ( byteStride && byteStride !== itemBytes ) { // Each "slice" of the buffer, as defined by 'count' elements of 'byteStride' bytes, gets its own InterleavedBuffer // This makes sure that IBA.count reflects accessor.count properly const ibSlice = Math.floor( byteOffset / byteStride ); const ibCacheKey = 'InterleavedBuffer:' + accessorDef.bufferView + ':' + accessorDef.componentType + ':' + ibSlice + ':' + accessorDef.count; let ib = parser.cache.get( ibCacheKey ); if ( ! ib ) { array = new TypedArray( bufferView, ibSlice * byteStride, accessorDef.count * byteStride / elementBytes ); // Integer parameters to IB/IBA are in array elements, not bytes. ib = new InterleavedBuffer( array, byteStride / elementBytes ); parser.cache.add( ibCacheKey, ib ); } bufferAttribute = new InterleavedBufferAttribute( ib, itemSize, ( byteOffset % byteStride ) / elementBytes, normalized ); } else { if ( bufferView === null ) { array = new TypedArray( accessorDef.count * itemSize ); } else { array = new TypedArray( bufferView, byteOffset, accessorDef.count * itemSize ); } bufferAttribute = new BufferAttribute( array, itemSize, normalized ); } // https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#sparse-accessors if ( accessorDef.sparse !== undefined ) { const itemSizeIndices = WEBGL_TYPE_SIZES.SCALAR; const TypedArrayIndices = WEBGL_COMPONENT_TYPES[ accessorDef.sparse.indices.componentType ]; const byteOffsetIndices = accessorDef.sparse.indices.byteOffset || 0; const byteOffsetValues = accessorDef.sparse.values.byteOffset || 0; const sparseIndices = new TypedArrayIndices( bufferViews[ 1 ], byteOffsetIndices, accessorDef.sparse.count * itemSizeIndices ); const sparseValues = new TypedArray( bufferViews[ 2 ], byteOffsetValues, accessorDef.sparse.count * itemSize ); if ( bufferView !== null ) { // Avoid modifying the original ArrayBuffer, if the bufferView wasn't initialized with zeroes. bufferAttribute = new BufferAttribute( bufferAttribute.array.slice(), bufferAttribute.itemSize, bufferAttribute.normalized ); } for ( let i = 0, il = sparseIndices.length; i < il; i ++ ) { const index = sparseIndices[ i ]; bufferAttribute.setX( index, sparseValues[ i * itemSize ] ); if ( itemSize >= 2 ) bufferAttribute.setY( index, sparseValues[ i * itemSize + 1 ] ); if ( itemSize >= 3 ) bufferAttribute.setZ( index, sparseValues[ i * itemSize + 2 ] ); if ( itemSize >= 4 ) bufferAttribute.setW( index, sparseValues[ i * itemSize + 3 ] ); if ( itemSize >= 5 ) throw new Error( 'THREE.GLTFLoader: Unsupported itemSize in sparse BufferAttribute.' ); } } return bufferAttribute; } ); } /** * Specification: https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#textures * @param {number} textureIndex * @return {Promise} */ loadTexture( textureIndex ) { const json = this.json; const options = this.options; const textureDef = json.textures[ textureIndex ]; const sourceIndex = textureDef.source; const sourceDef = json.images[ sourceIndex ]; let loader = this.textureLoader; if ( sourceDef.uri ) { const handler = options.manager.getHandler( sourceDef.uri ); if ( handler !== null ) loader = handler; } return this.loadTextureImage( textureIndex, sourceIndex, loader ); } loadTextureImage( textureIndex, sourceIndex, loader ) { const parser = this; const json = this.json; const textureDef = json.textures[ textureIndex ]; const sourceDef = json.images[ sourceIndex ]; const cacheKey = ( sourceDef.uri || sourceDef.bufferView ) + ':' + textureDef.sampler; if ( this.textureCache[ cacheKey ] ) { // See https://github.com/mrdoob/three.js/issues/21559. return this.textureCache[ cacheKey ]; } const promise = this.loadImageSource( sourceIndex, loader ).then( function ( texture ) { texture.flipY = false; texture.name = textureDef.name || sourceDef.name || ''; if ( texture.name === '' && typeof sourceDef.uri === 'string' && sourceDef.uri.startsWith( 'data:image/' ) === false ) { texture.name = sourceDef.uri; } const samplers = json.samplers || {}; const sampler = samplers[ textureDef.sampler ] || {}; texture.magFilter = WEBGL_FILTERS[ sampler.magFilter ] || LinearFilter; texture.minFilter = WEBGL_FILTERS[ sampler.minFilter ] || LinearMipmapLinearFilter; texture.wrapS = WEBGL_WRAPPINGS[ sampler.wrapS ] || RepeatWrapping; texture.wrapT = WEBGL_WRAPPINGS[ sampler.wrapT ] || RepeatWrapping; parser.associations.set( texture, { textures: textureIndex } ); return texture; } ).catch( function () { return null; } ); this.textureCache[ cacheKey ] = promise; return promise; } loadImageSource( sourceIndex, loader ) { const parser = this; const json = this.json; const options = this.options; if ( this.sourceCache[ sourceIndex ] !== undefined ) { return this.sourceCache[ sourceIndex ].then( ( texture ) => texture.clone() ); } const sourceDef = json.images[ sourceIndex ]; const URL = self.URL || self.webkitURL; let sourceURI = sourceDef.uri || ''; let isObjectURL = false; if ( sourceDef.bufferView !== undefined ) { // Load binary image data from bufferView, if provided. sourceURI = parser.getDependency( 'bufferView', sourceDef.bufferView ).then( function ( bufferView ) { isObjectURL = true; const blob = new Blob( [ bufferView ], { type: sourceDef.mimeType } ); sourceURI = URL.createObjectURL( blob ); return sourceURI; } ); } else if ( sourceDef.uri === undefined ) { throw new Error( 'THREE.GLTFLoader: Image ' + sourceIndex + ' is missing URI and bufferView' ); } const promise = Promise.resolve( sourceURI ).then( function ( sourceURI ) { return new Promise( function ( resolve, reject ) { let onLoad = resolve; if ( loader.isImageBitmapLoader === true ) { onLoad = function ( imageBitmap ) { const texture = new Texture( imageBitmap ); texture.needsUpdate = true; resolve( texture ); }; } loader.load( LoaderUtils.resolveURL( sourceURI, options.path ), onLoad, undefined, reject ); } ); } ).then( function ( texture ) { // Clean up resources and configure Texture. if ( isObjectURL === true ) { URL.revokeObjectURL( sourceURI ); } texture.userData.mimeType = sourceDef.mimeType || getImageURIMimeType( sourceDef.uri ); return texture; } ).catch( function ( error ) { console.error( 'THREE.GLTFLoader: Couldn\'t load texture', sourceURI ); throw error; } ); this.sourceCache[ sourceIndex ] = promise; return promise; } /** * Asynchronously assigns a texture to the given material parameters. * @param {Object} materialParams * @param {string} mapName * @param {Object} mapDef * @return {Promise} */ assignTexture( materialParams, mapName, mapDef, colorSpace ) { const parser = this; return this.getDependency( 'texture', mapDef.index ).then( function ( texture ) { if ( ! texture ) return null; if ( mapDef.texCoord !== undefined && mapDef.texCoord > 0 ) { texture = texture.clone(); texture.channel = mapDef.texCoord; } if ( parser.extensions[ EXTENSIONS.KHR_TEXTURE_TRANSFORM ] ) { const transform = mapDef.extensions !== undefined ? mapDef.extensions[ EXTENSIONS.KHR_TEXTURE_TRANSFORM ] : undefined; if ( transform ) { const gltfReference = parser.associations.get( texture ); texture = parser.extensions[ EXTENSIONS.KHR_TEXTURE_TRANSFORM ].extendTexture( texture, transform ); parser.associations.set( texture, gltfReference ); } } if ( colorSpace !== undefined ) { texture.colorSpace = colorSpace; } materialParams[ mapName ] = texture; return texture; } ); } /** * Assigns final material to a Mesh, Line, or Points instance. The instance * already has a material (generated from the glTF material options alone) * but reuse of the same glTF material may require multiple threejs materials * to accommodate different primitive types, defines, etc. New materials will * be created if necessary, and reused from a cache. * @param {Object3D} mesh Mesh, Line, or Points instance. */ assignFinalMaterial( mesh ) { const geometry = mesh.geometry; let material = mesh.material; const useDerivativeTangents = geometry.attributes.tangent === undefined; const useVertexColors = geometry.attributes.color !== undefined; const useFlatShading = geometry.attributes.normal === undefined; if ( mesh.isPoints ) { const cacheKey = 'PointsMaterial:' + material.uuid; let pointsMaterial = this.cache.get( cacheKey ); if ( ! pointsMaterial ) { pointsMaterial = new PointsMaterial(); Material.prototype.copy.call( pointsMaterial, material ); pointsMaterial.color.copy( material.color ); pointsMaterial.map = material.map; pointsMaterial.sizeAttenuation = false; // glTF spec says points should be 1px this.cache.add( cacheKey, pointsMaterial ); } material = pointsMaterial; } else if ( mesh.isLine ) { const cacheKey = 'LineBasicMaterial:' + material.uuid; let lineMaterial = this.cache.get( cacheKey ); if ( ! lineMaterial ) { lineMaterial = new LineBasicMaterial(); Material.prototype.copy.call( lineMaterial, material ); lineMaterial.color.copy( material.color ); lineMaterial.map = material.map; this.cache.add( cacheKey, lineMaterial ); } material = lineMaterial; } // Clone the material if it will be modified if ( useDerivativeTangents || useVertexColors || useFlatShading ) { let cacheKey = 'ClonedMaterial:' + material.uuid + ':'; if ( useDerivativeTangents ) cacheKey += 'derivative-tangents:'; if ( useVertexColors ) cacheKey += 'vertex-colors:'; if ( useFlatShading ) cacheKey += 'flat-shading:'; let cachedMaterial = this.cache.get( cacheKey ); if ( ! cachedMaterial ) { cachedMaterial = material.clone(); if ( useVertexColors ) cachedMaterial.vertexColors = true; if ( useFlatShading ) cachedMaterial.flatShading = true; if ( useDerivativeTangents ) { // https://github.com/mrdoob/three.js/issues/11438#issuecomment-507003995 if ( cachedMaterial.normalScale ) cachedMaterial.normalScale.y *= - 1; if ( cachedMaterial.clearcoatNormalScale ) cachedMaterial.clearcoatNormalScale.y *= - 1; } this.cache.add( cacheKey, cachedMaterial ); this.associations.set( cachedMaterial, this.associations.get( material ) ); } material = cachedMaterial; } mesh.material = material; } getMaterialType( /* materialIndex */ ) { return MeshStandardMaterial; } /** * Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#materials * @param {number} materialIndex * @return {Promise} */ loadMaterial( materialIndex ) { const parser = this; const json = this.json; const extensions = this.extensions; const materialDef = json.materials[ materialIndex ]; let materialType; const materialParams = {}; const materialExtensions = materialDef.extensions || {}; const pending = []; if ( materialExtensions[ EXTENSIONS.KHR_MATERIALS_UNLIT ] ) { const kmuExtension = extensions[ EXTENSIONS.KHR_MATERIALS_UNLIT ]; materialType = kmuExtension.getMaterialType(); pending.push( kmuExtension.extendParams( materialParams, materialDef, parser ) ); } else { // Specification: // https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#metallic-roughness-material const metallicRoughness = materialDef.pbrMetallicRoughness || {}; materialParams.color = new Color( 1.0, 1.0, 1.0 ); materialParams.opacity = 1.0; if ( Array.isArray( metallicRoughness.baseColorFactor ) ) { const array = metallicRoughness.baseColorFactor; materialParams.color.setRGB( array[ 0 ], array[ 1 ], array[ 2 ], LinearSRGBColorSpace ); materialParams.opacity = array[ 3 ]; } if ( metallicRoughness.baseColorTexture !== undefined ) { pending.push( parser.assignTexture( materialParams, 'map', metallicRoughness.baseColorTexture, SRGBColorSpace ) ); } materialParams.metalness = metallicRoughness.metallicFactor !== undefined ? metallicRoughness.metallicFactor : 1.0; materialParams.roughness = metallicRoughness.roughnessFactor !== undefined ? metallicRoughness.roughnessFactor : 1.0; if ( metallicRoughness.metallicRoughnessTexture !== undefined ) { pending.push( parser.assignTexture( materialParams, 'metalnessMap', metallicRoughness.metallicRoughnessTexture ) ); pending.push( parser.assignTexture( materialParams, 'roughnessMap', metallicRoughness.metallicRoughnessTexture ) ); } materialType = this._invokeOne( function ( ext ) { return ext.getMaterialType && ext.getMaterialType( materialIndex ); } ); pending.push( Promise.all( this._invokeAll( function ( ext ) { return ext.extendMaterialParams && ext.extendMaterialParams( materialIndex, materialParams ); } ) ) ); } if ( materialDef.doubleSided === true ) { materialParams.side = DoubleSide; } const alphaMode = materialDef.alphaMode || ALPHA_MODES.OPAQUE; if ( alphaMode === ALPHA_MODES.BLEND ) { materialParams.transparent = true; // See: https://github.com/mrdoob/three.js/issues/17706 materialParams.depthWrite = false; } else { materialParams.transparent = false; if ( alphaMode === ALPHA_MODES.MASK ) { materialParams.alphaTest = materialDef.alphaCutoff !== undefined ? materialDef.alphaCutoff : 0.5; } } if ( materialDef.normalTexture !== undefined && materialType !== MeshBasicMaterial ) { pending.push( parser.assignTexture( materialParams, 'normalMap', materialDef.normalTexture ) ); materialParams.normalScale = new Vector2( 1, 1 ); if ( materialDef.normalTexture.scale !== undefined ) { const scale = materialDef.normalTexture.scale; materialParams.normalScale.set( scale, scale ); } } if ( materialDef.occlusionTexture !== undefined && materialType !== MeshBasicMaterial ) { pending.push( parser.assignTexture( materialParams, 'aoMap', materialDef.occlusionTexture ) ); if ( materialDef.occlusionTexture.strength !== undefined ) { materialParams.aoMapIntensity = materialDef.occlusionTexture.strength; } } if ( materialDef.emissiveFactor !== undefined && materialType !== MeshBasicMaterial ) { const emissiveFactor = materialDef.emissiveFactor; materialParams.emissive = new Color().setRGB( emissiveFactor[ 0 ], emissiveFactor[ 1 ], emissiveFactor[ 2 ], LinearSRGBColorSpace ); } if ( materialDef.emissiveTexture !== undefined && materialType !== MeshBasicMaterial ) { pending.push( parser.assignTexture( materialParams, 'emissiveMap', materialDef.emissiveTexture, SRGBColorSpace ) ); } return Promise.all( pending ).then( function () { const material = new materialType( materialParams ); if ( materialDef.name ) material.name = materialDef.name; assignExtrasToUserData( material, materialDef ); parser.associations.set( material, { materials: materialIndex } ); if ( materialDef.extensions ) addUnknownExtensionsToUserData( extensions, material, materialDef ); return material; } ); } /** When Object3D instances are targeted by animation, they need unique names. */ createUniqueName( originalName ) { const sanitizedName = PropertyBinding.sanitizeNodeName( originalName || '' ); if ( sanitizedName in this.nodeNamesUsed ) { return sanitizedName + '_' + ( ++ this.nodeNamesUsed[ sanitizedName ] ); } else { this.nodeNamesUsed[ sanitizedName ] = 0; return sanitizedName; } } /** * Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#geometry * * Creates BufferGeometries from primitives. * * @param {Array} primitives * @return {Promise>} */ loadGeometries( primitives ) { const parser = this; const extensions = this.extensions; const cache = this.primitiveCache; function createDracoPrimitive( primitive ) { return extensions[ EXTENSIONS.KHR_DRACO_MESH_COMPRESSION ] .decodePrimitive( primitive, parser ) .then( function ( geometry ) { return addPrimitiveAttributes( geometry, primitive, parser ); } ); } const pending = []; for ( let i = 0, il = primitives.length; i < il; i ++ ) { const primitive = primitives[ i ]; const cacheKey = createPrimitiveKey( primitive ); // See if we've already created this geometry const cached = cache[ cacheKey ]; if ( cached ) { // Use the cached geometry if it exists pending.push( cached.promise ); } else { let geometryPromise; if ( primitive.extensions && primitive.extensions[ EXTENSIONS.KHR_DRACO_MESH_COMPRESSION ] ) { // Use DRACO geometry if available geometryPromise = createDracoPrimitive( primitive ); } else { // Otherwise create a new geometry geometryPromise = addPrimitiveAttributes( new BufferGeometry(), primitive, parser ); } // Cache this geometry cache[ cacheKey ] = { primitive: primitive, promise: geometryPromise }; pending.push( geometryPromise ); } } return Promise.all( pending ); } /** * Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#meshes * @param {number} meshIndex * @return {Promise} */ loadMesh( meshIndex ) { const parser = this; const json = this.json; const extensions = this.extensions; const meshDef = json.meshes[ meshIndex ]; const primitives = meshDef.primitives; const pending = []; for ( let i = 0, il = primitives.length; i < il; i ++ ) { const material = primitives[ i ].material === undefined ? createDefaultMaterial( this.cache ) : this.getDependency( 'material', primitives[ i ].material ); pending.push( material ); } pending.push( parser.loadGeometries( primitives ) ); return Promise.all( pending ).then( function ( results ) { const materials = results.slice( 0, results.length - 1 ); const geometries = results[ results.length - 1 ]; const meshes = []; for ( let i = 0, il = geometries.length; i < il; i ++ ) { const geometry = geometries[ i ]; const primitive = primitives[ i ]; // 1. create Mesh let mesh; const material = materials[ i ]; if ( primitive.mode === WEBGL_CONSTANTS.TRIANGLES || primitive.mode === WEBGL_CONSTANTS.TRIANGLE_STRIP || primitive.mode === WEBGL_CONSTANTS.TRIANGLE_FAN || primitive.mode === undefined ) { // .isSkinnedMesh isn't in glTF spec. See ._markDefs() mesh = meshDef.isSkinnedMesh === true ? new SkinnedMesh( geometry, material ) : new Mesh( geometry, material ); if ( mesh.isSkinnedMesh === true ) { // normalize skin weights to fix malformed assets (see #15319) mesh.normalizeSkinWeights(); } if ( primitive.mode === WEBGL_CONSTANTS.TRIANGLE_STRIP ) { mesh.geometry = toTrianglesDrawMode( mesh.geometry, TriangleStripDrawMode ); } else if ( primitive.mode === WEBGL_CONSTANTS.TRIANGLE_FAN ) { mesh.geometry = toTrianglesDrawMode( mesh.geometry, TriangleFanDrawMode ); } } else if ( primitive.mode === WEBGL_CONSTANTS.LINES ) { mesh = new LineSegments( geometry, material ); } else if ( primitive.mode === WEBGL_CONSTANTS.LINE_STRIP ) { mesh = new Line( geometry, material ); } else if ( primitive.mode === WEBGL_CONSTANTS.LINE_LOOP ) { mesh = new LineLoop( geometry, material ); } else if ( primitive.mode === WEBGL_CONSTANTS.POINTS ) { mesh = new Points( geometry, material ); } else { throw new Error( 'THREE.GLTFLoader: Primitive mode unsupported: ' + primitive.mode ); } if ( Object.keys( mesh.geometry.morphAttributes ).length > 0 ) { updateMorphTargets( mesh, meshDef ); } mesh.name = parser.createUniqueName( meshDef.name || ( 'mesh_' + meshIndex ) ); assignExtrasToUserData( mesh, meshDef ); if ( primitive.extensions ) addUnknownExtensionsToUserData( extensions, mesh, primitive ); parser.assignFinalMaterial( mesh ); meshes.push( mesh ); } for ( let i = 0, il = meshes.length; i < il; i ++ ) { parser.associations.set( meshes[ i ], { meshes: meshIndex, primitives: i } ); } if ( meshes.length === 1 ) { if ( meshDef.extensions ) addUnknownExtensionsToUserData( extensions, meshes[ 0 ], meshDef ); return meshes[ 0 ]; } const group = new Group(); if ( meshDef.extensions ) addUnknownExtensionsToUserData( extensions, group, meshDef ); parser.associations.set( group, { meshes: meshIndex } ); for ( let i = 0, il = meshes.length; i < il; i ++ ) { group.add( meshes[ i ] ); } return group; } ); } /** * Specification: https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#cameras * @param {number} cameraIndex * @return {Promise} */ loadCamera( cameraIndex ) { let camera; const cameraDef = this.json.cameras[ cameraIndex ]; const params = cameraDef[ cameraDef.type ]; if ( ! params ) { console.warn( 'THREE.GLTFLoader: Missing camera parameters.' ); return; } if ( cameraDef.type === 'perspective' ) { camera = new PerspectiveCamera( MathUtils.radToDeg( params.yfov ), params.aspectRatio || 1, params.znear || 1, params.zfar || 2e6 ); } else if ( cameraDef.type === 'orthographic' ) { camera = new OrthographicCamera( - params.xmag, params.xmag, params.ymag, - params.ymag, params.znear, params.zfar ); } if ( cameraDef.name ) camera.name = this.createUniqueName( cameraDef.name ); assignExtrasToUserData( camera, cameraDef ); return Promise.resolve( camera ); } /** * Specification: https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#skins * @param {number} skinIndex * @return {Promise} */ loadSkin( skinIndex ) { const skinDef = this.json.skins[ skinIndex ]; const pending = []; for ( let i = 0, il = skinDef.joints.length; i < il; i ++ ) { pending.push( this._loadNodeShallow( skinDef.joints[ i ] ) ); } if ( skinDef.inverseBindMatrices !== undefined ) { pending.push( this.getDependency( 'accessor', skinDef.inverseBindMatrices ) ); } else { pending.push( null ); } return Promise.all( pending ).then( function ( results ) { const inverseBindMatrices = results.pop(); const jointNodes = results; // Note that bones (joint nodes) may or may not be in the // scene graph at this time. const bones = []; const boneInverses = []; for ( let i = 0, il = jointNodes.length; i < il; i ++ ) { const jointNode = jointNodes[ i ]; if ( jointNode ) { bones.push( jointNode ); const mat = new Matrix4(); if ( inverseBindMatrices !== null ) { mat.fromArray( inverseBindMatrices.array, i * 16 ); } boneInverses.push( mat ); } else { console.warn( 'THREE.GLTFLoader: Joint "%s" could not be found.', skinDef.joints[ i ] ); } } return new Skeleton( bones, boneInverses ); } ); } /** * Specification: https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#animations * @param {number} animationIndex * @return {Promise} */ loadAnimation( animationIndex ) { const json = this.json; const parser = this; const animationDef = json.animations[ animationIndex ]; const animationName = animationDef.name ? animationDef.name : 'animation_' + animationIndex; const pendingNodes = []; const pendingInputAccessors = []; const pendingOutputAccessors = []; const pendingSamplers = []; const pendingTargets = []; for ( let i = 0, il = animationDef.channels.length; i < il; i ++ ) { const channel = animationDef.channels[ i ]; const sampler = animationDef.samplers[ channel.sampler ]; const target = channel.target; const name = target.node; const input = animationDef.parameters !== undefined ? animationDef.parameters[ sampler.input ] : sampler.input; const output = animationDef.parameters !== undefined ? animationDef.parameters[ sampler.output ] : sampler.output; if ( target.node === undefined ) continue; pendingNodes.push( this.getDependency( 'node', name ) ); pendingInputAccessors.push( this.getDependency( 'accessor', input ) ); pendingOutputAccessors.push( this.getDependency( 'accessor', output ) ); pendingSamplers.push( sampler ); pendingTargets.push( target ); } return Promise.all( [ Promise.all( pendingNodes ), Promise.all( pendingInputAccessors ), Promise.all( pendingOutputAccessors ), Promise.all( pendingSamplers ), Promise.all( pendingTargets ) ] ).then( function ( dependencies ) { const nodes = dependencies[ 0 ]; const inputAccessors = dependencies[ 1 ]; const outputAccessors = dependencies[ 2 ]; const samplers = dependencies[ 3 ]; const targets = dependencies[ 4 ]; const tracks = []; for ( let i = 0, il = nodes.length; i < il; i ++ ) { const node = nodes[ i ]; const inputAccessor = inputAccessors[ i ]; const outputAccessor = outputAccessors[ i ]; const sampler = samplers[ i ]; const target = targets[ i ]; if ( node === undefined ) continue; if ( node.updateMatrix ) { node.updateMatrix(); } const createdTracks = parser._createAnimationTracks( node, inputAccessor, outputAccessor, sampler, target ); if ( createdTracks ) { for ( let k = 0; k < createdTracks.length; k ++ ) { tracks.push( createdTracks[ k ] ); } } } return new AnimationClip( animationName, undefined, tracks ); } ); } createNodeMesh( nodeIndex ) { const json = this.json; const parser = this; const nodeDef = json.nodes[ nodeIndex ]; if ( nodeDef.mesh === undefined ) return null; return parser.getDependency( 'mesh', nodeDef.mesh ).then( function ( mesh ) { const node = parser._getNodeRef( parser.meshCache, nodeDef.mesh, mesh ); // if weights are provided on the node, override weights on the mesh. if ( nodeDef.weights !== undefined ) { node.traverse( function ( o ) { if ( ! o.isMesh ) return; for ( let i = 0, il = nodeDef.weights.length; i < il; i ++ ) { o.morphTargetInfluences[ i ] = nodeDef.weights[ i ]; } } ); } return node; } ); } /** * Specification: https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#nodes-and-hierarchy * @param {number} nodeIndex * @return {Promise} */ loadNode( nodeIndex ) { const json = this.json; const parser = this; const nodeDef = json.nodes[ nodeIndex ]; const nodePending = parser._loadNodeShallow( nodeIndex ); const childPending = []; const childrenDef = nodeDef.children || []; for ( let i = 0, il = childrenDef.length; i < il; i ++ ) { childPending.push( parser.getDependency( 'node', childrenDef[ i ] ) ); } const skeletonPending = nodeDef.skin === undefined ? Promise.resolve( null ) : parser.getDependency( 'skin', nodeDef.skin ); return Promise.all( [ nodePending, Promise.all( childPending ), skeletonPending ] ).then( function ( results ) { const node = results[ 0 ]; const children = results[ 1 ]; const skeleton = results[ 2 ]; if ( skeleton !== null ) { // This full traverse should be fine because // child glTF nodes have not been added to this node yet. node.traverse( function ( mesh ) { if ( ! mesh.isSkinnedMesh ) return; mesh.bind( skeleton, _identityMatrix ); } ); } for ( let i = 0, il = children.length; i < il; i ++ ) { node.add( children[ i ] ); } return node; } ); } // ._loadNodeShallow() parses a single node. // skin and child nodes are created and added in .loadNode() (no '_' prefix). _loadNodeShallow( nodeIndex ) { const json = this.json; const extensions = this.extensions; const parser = this; // This method is called from .loadNode() and .loadSkin(). // Cache a node to avoid duplication. if ( this.nodeCache[ nodeIndex ] !== undefined ) { return this.nodeCache[ nodeIndex ]; } const nodeDef = json.nodes[ nodeIndex ]; // reserve node's name before its dependencies, so the root has the intended name. const nodeName = nodeDef.name ? parser.createUniqueName( nodeDef.name ) : ''; const pending = []; const meshPromise = parser._invokeOne( function ( ext ) { return ext.createNodeMesh && ext.createNodeMesh( nodeIndex ); } ); if ( meshPromise ) { pending.push( meshPromise ); } if ( nodeDef.camera !== undefined ) { pending.push( parser.getDependency( 'camera', nodeDef.camera ).then( function ( camera ) { return parser._getNodeRef( parser.cameraCache, nodeDef.camera, camera ); } ) ); } parser._invokeAll( function ( ext ) { return ext.createNodeAttachment && ext.createNodeAttachment( nodeIndex ); } ).forEach( function ( promise ) { pending.push( promise ); } ); this.nodeCache[ nodeIndex ] = Promise.all( pending ).then( function ( objects ) { let node; // .isBone isn't in glTF spec. See ._markDefs if ( nodeDef.isBone === true ) { node = new Bone(); } else if ( objects.length > 1 ) { node = new Group(); } else if ( objects.length === 1 ) { node = objects[ 0 ]; } else { node = new Object3D(); } if ( node !== objects[ 0 ] ) { for ( let i = 0, il = objects.length; i < il; i ++ ) { node.add( objects[ i ] ); } } if ( nodeDef.name ) { node.userData.name = nodeDef.name; node.name = nodeName; } assignExtrasToUserData( node, nodeDef ); if ( nodeDef.extensions ) addUnknownExtensionsToUserData( extensions, node, nodeDef ); if ( nodeDef.matrix !== undefined ) { const matrix = new Matrix4(); matrix.fromArray( nodeDef.matrix ); node.applyMatrix4( matrix ); } else { if ( nodeDef.translation !== undefined ) { node.position.fromArray( nodeDef.translation ); } if ( nodeDef.rotation !== undefined ) { node.quaternion.fromArray( nodeDef.rotation ); } if ( nodeDef.scale !== undefined ) { node.scale.fromArray( nodeDef.scale ); } } if ( ! parser.associations.has( node ) ) { parser.associations.set( node, {} ); } parser.associations.get( node ).nodes = nodeIndex; return node; } ); return this.nodeCache[ nodeIndex ]; } /** * Specification: https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#scenes * @param {number} sceneIndex * @return {Promise} */ loadScene( sceneIndex ) { const extensions = this.extensions; const sceneDef = this.json.scenes[ sceneIndex ]; const parser = this; // Loader returns Group, not Scene. // See: https://github.com/mrdoob/three.js/issues/18342#issuecomment-578981172 const scene = new Group(); if ( sceneDef.name ) scene.name = parser.createUniqueName( sceneDef.name ); assignExtrasToUserData( scene, sceneDef ); if ( sceneDef.extensions ) addUnknownExtensionsToUserData( extensions, scene, sceneDef ); const nodeIds = sceneDef.nodes || []; const pending = []; for ( let i = 0, il = nodeIds.length; i < il; i ++ ) { pending.push( parser.getDependency( 'node', nodeIds[ i ] ) ); } return Promise.all( pending ).then( function ( nodes ) { for ( let i = 0, il = nodes.length; i < il; i ++ ) { scene.add( nodes[ i ] ); } // Removes dangling associations, associations that reference a node that // didn't make it into the scene. const reduceAssociations = ( node ) => { const reducedAssociations = new Map(); for ( const [ key, value ] of parser.associations ) { if ( key instanceof Material || key instanceof Texture ) { reducedAssociations.set( key, value ); } } node.traverse( ( node ) => { const mappings = parser.associations.get( node ); if ( mappings != null ) { reducedAssociations.set( node, mappings ); } } ); return reducedAssociations; }; parser.associations = reduceAssociations( scene ); return scene; } ); } _createAnimationTracks( node, inputAccessor, outputAccessor, sampler, target ) { const tracks = []; const targetName = node.name ? node.name : node.uuid; const targetNames = []; if ( PATH_PROPERTIES[ target.path ] === PATH_PROPERTIES.weights ) { node.traverse( function ( object ) { if ( object.morphTargetInfluences ) { targetNames.push( object.name ? object.name : object.uuid ); } } ); } else { targetNames.push( targetName ); } let TypedKeyframeTrack; switch ( PATH_PROPERTIES[ target.path ] ) { case PATH_PROPERTIES.weights: TypedKeyframeTrack = NumberKeyframeTrack; break; case PATH_PROPERTIES.rotation: TypedKeyframeTrack = QuaternionKeyframeTrack; break; case PATH_PROPERTIES.position: case PATH_PROPERTIES.scale: TypedKeyframeTrack = VectorKeyframeTrack; break; default: switch ( outputAccessor.itemSize ) { case 1: TypedKeyframeTrack = NumberKeyframeTrack; break; case 2: case 3: default: TypedKeyframeTrack = VectorKeyframeTrack; break; } break; } const interpolation = sampler.interpolation !== undefined ? INTERPOLATION[ sampler.interpolation ] : InterpolateLinear; const outputArray = this._getArrayFromAccessor( outputAccessor ); for ( let j = 0, jl = targetNames.length; j < jl; j ++ ) { const track = new TypedKeyframeTrack( targetNames[ j ] + '.' + PATH_PROPERTIES[ target.path ], inputAccessor.array, outputArray, interpolation ); // Override interpolation with custom factory method. if ( sampler.interpolation === 'CUBICSPLINE' ) { this._createCubicSplineTrackInterpolant( track ); } tracks.push( track ); } return tracks; } _getArrayFromAccessor( accessor ) { let outputArray = accessor.array; if ( accessor.normalized ) { const scale = getNormalizedComponentScale( outputArray.constructor ); const scaled = new Float32Array( outputArray.length ); for ( let j = 0, jl = outputArray.length; j < jl; j ++ ) { scaled[ j ] = outputArray[ j ] * scale; } outputArray = scaled; } return outputArray; } _createCubicSplineTrackInterpolant( track ) { track.createInterpolant = function InterpolantFactoryMethodGLTFCubicSpline( result ) { // A CUBICSPLINE keyframe in glTF has three output values for each input value, // representing inTangent, splineVertex, and outTangent. As a result, track.getValueSize() // must be divided by three to get the interpolant's sampleSize argument. const interpolantType = ( this instanceof QuaternionKeyframeTrack ) ? GLTFCubicSplineQuaternionInterpolant : GLTFCubicSplineInterpolant; return new interpolantType( this.times, this.values, this.getValueSize() / 3, result ); }; // Mark as CUBICSPLINE. `track.getInterpolation()` doesn't support custom interpolants. track.createInterpolant.isInterpolantFactoryMethodGLTFCubicSpline = true; } } /** * @param {BufferGeometry} geometry * @param {GLTF.Primitive} primitiveDef * @param {GLTFParser} parser */ function computeBounds( geometry, primitiveDef, parser ) { const attributes = primitiveDef.attributes; const box = new Box3(); if ( attributes.POSITION !== undefined ) { const accessor = parser.json.accessors[ attributes.POSITION ]; const min = accessor.min; const max = accessor.max; // glTF requires 'min' and 'max', but VRM (which extends glTF) currently ignores that requirement. if ( min !== undefined && max !== undefined ) { box.set( new Vector3( min[ 0 ], min[ 1 ], min[ 2 ] ), new Vector3( max[ 0 ], max[ 1 ], max[ 2 ] ) ); if ( accessor.normalized ) { const boxScale = getNormalizedComponentScale( WEBGL_COMPONENT_TYPES[ accessor.componentType ] ); box.min.multiplyScalar( boxScale ); box.max.multiplyScalar( boxScale ); } } else { console.warn( 'THREE.GLTFLoader: Missing min/max properties for accessor POSITION.' ); return; } } else { return; } const targets = primitiveDef.targets; if ( targets !== undefined ) { const maxDisplacement = new Vector3(); const vector = new Vector3(); for ( let i = 0, il = targets.length; i < il; i ++ ) { const target = targets[ i ]; if ( target.POSITION !== undefined ) { const accessor = parser.json.accessors[ target.POSITION ]; const min = accessor.min; const max = accessor.max; // glTF requires 'min' and 'max', but VRM (which extends glTF) currently ignores that requirement. if ( min !== undefined && max !== undefined ) { // we need to get max of absolute components because target weight is [-1,1] vector.setX( Math.max( Math.abs( min[ 0 ] ), Math.abs( max[ 0 ] ) ) ); vector.setY( Math.max( Math.abs( min[ 1 ] ), Math.abs( max[ 1 ] ) ) ); vector.setZ( Math.max( Math.abs( min[ 2 ] ), Math.abs( max[ 2 ] ) ) ); if ( accessor.normalized ) { const boxScale = getNormalizedComponentScale( WEBGL_COMPONENT_TYPES[ accessor.componentType ] ); vector.multiplyScalar( boxScale ); } // Note: this assumes that the sum of all weights is at most 1. This isn't quite correct - it's more conservative // to assume that each target can have a max weight of 1. However, for some use cases - notably, when morph targets // are used to implement key-frame animations and as such only two are active at a time - this results in very large // boxes. So for now we make a box that's sometimes a touch too small but is hopefully mostly of reasonable size. maxDisplacement.max( vector ); } else { console.warn( 'THREE.GLTFLoader: Missing min/max properties for accessor POSITION.' ); } } } // As per comment above this box isn't conservative, but has a reasonable size for a very large number of morph targets. box.expandByVector( maxDisplacement ); } geometry.boundingBox = box; const sphere = new Sphere(); box.getCenter( sphere.center ); sphere.radius = box.min.distanceTo( box.max ) / 2; geometry.boundingSphere = sphere; } /** * @param {BufferGeometry} geometry * @param {GLTF.Primitive} primitiveDef * @param {GLTFParser} parser * @return {Promise} */ function addPrimitiveAttributes( geometry, primitiveDef, parser ) { const attributes = primitiveDef.attributes; const pending = []; function assignAttributeAccessor( accessorIndex, attributeName ) { return parser.getDependency( 'accessor', accessorIndex ) .then( function ( accessor ) { geometry.setAttribute( attributeName, accessor ); } ); } for ( const gltfAttributeName in attributes ) { const threeAttributeName = ATTRIBUTES[ gltfAttributeName ] || gltfAttributeName.toLowerCase(); // Skip attributes already provided by e.g. Draco extension. if ( threeAttributeName in geometry.attributes ) continue; pending.push( assignAttributeAccessor( attributes[ gltfAttributeName ], threeAttributeName ) ); } if ( primitiveDef.indices !== undefined && ! geometry.index ) { const accessor = parser.getDependency( 'accessor', primitiveDef.indices ).then( function ( accessor ) { geometry.setIndex( accessor ); } ); pending.push( accessor ); } if ( ColorManagement.workingColorSpace !== LinearSRGBColorSpace && 'COLOR_0' in attributes ) { console.warn( `THREE.GLTFLoader: Converting vertex colors from "srgb-linear" to "${ColorManagement.workingColorSpace}" not supported.` ); } assignExtrasToUserData( geometry, primitiveDef ); computeBounds( geometry, primitiveDef, parser ); return Promise.all( pending ).then( function () { return primitiveDef.targets !== undefined ? addMorphTargets( geometry, primitiveDef.targets, parser ) : geometry; } ); } export { GLTFLoader };