import { AmbientLight, AnimationClip, Bone, BufferGeometry, ClampToEdgeWrapping, Color, DirectionalLight, EquirectangularReflectionMapping, Euler, FileLoader, Float32BufferAttribute, Group, Line, LineBasicMaterial, Loader, LoaderUtils, MathUtils, Matrix3, Matrix4, Mesh, MeshLambertMaterial, MeshPhongMaterial, NumberKeyframeTrack, Object3D, OrthographicCamera, PerspectiveCamera, PointLight, PropertyBinding, Quaternion, QuaternionKeyframeTrack, RepeatWrapping, Skeleton, SkinnedMesh, SpotLight, Texture, TextureLoader, Uint16BufferAttribute, Vector2, Vector3, Vector4, VectorKeyframeTrack, SRGBColorSpace, ShapeUtils } from 'three'; import * as fflate from '../libs/fflate.module.js'; import { NURBSCurve } from '../curves/NURBSCurve.js'; /** * Loader loads FBX file and generates Group representing FBX scene. * Requires FBX file to be >= 7.0 and in ASCII or >= 6400 in Binary format * Versions lower than this may load but will probably have errors * * Needs Support: * Morph normals / blend shape normals * * FBX format references: * https://help.autodesk.com/view/FBX/2017/ENU/?guid=__cpp_ref_index_html (C++ SDK reference) * * Binary format specification: * https://code.blender.org/2013/08/fbx-binary-file-format-specification/ */ let fbxTree; let connections; let sceneGraph; class FBXLoader extends Loader { constructor( manager ) { super( manager ); } load( url, onLoad, onProgress, onError ) { const scope = this; const path = ( scope.path === '' ) ? LoaderUtils.extractUrlBase( url ) : scope.path; const loader = new FileLoader( this.manager ); loader.setPath( scope.path ); loader.setResponseType( 'arraybuffer' ); loader.setRequestHeader( scope.requestHeader ); loader.setWithCredentials( scope.withCredentials ); loader.load( url, function ( buffer ) { try { onLoad( scope.parse( buffer, path ) ); } catch ( e ) { if ( onError ) { onError( e ); } else { console.error( e ); } scope.manager.itemError( url ); } }, onProgress, onError ); } parse( FBXBuffer, path ) { if ( isFbxFormatBinary( FBXBuffer ) ) { fbxTree = new BinaryParser().parse( FBXBuffer ); } else { const FBXText = convertArrayBufferToString( FBXBuffer ); if ( ! isFbxFormatASCII( FBXText ) ) { throw new Error( 'THREE.FBXLoader: Unknown format.' ); } if ( getFbxVersion( FBXText ) < 7000 ) { throw new Error( 'THREE.FBXLoader: FBX version not supported, FileVersion: ' + getFbxVersion( FBXText ) ); } fbxTree = new TextParser().parse( FBXText ); } // console.log( fbxTree ); const textureLoader = new TextureLoader( this.manager ).setPath( this.resourcePath || path ).setCrossOrigin( this.crossOrigin ); return new FBXTreeParser( textureLoader, this.manager ).parse( fbxTree ); } } // Parse the FBXTree object returned by the BinaryParser or TextParser and return a Group class FBXTreeParser { constructor( textureLoader, manager ) { this.textureLoader = textureLoader; this.manager = manager; } parse() { connections = this.parseConnections(); const images = this.parseImages(); const textures = this.parseTextures( images ); const materials = this.parseMaterials( textures ); const deformers = this.parseDeformers(); const geometryMap = new GeometryParser().parse( deformers ); this.parseScene( deformers, geometryMap, materials ); return sceneGraph; } // Parses FBXTree.Connections which holds parent-child connections between objects (e.g. material -> texture, model->geometry ) // and details the connection type parseConnections() { const connectionMap = new Map(); if ( 'Connections' in fbxTree ) { const rawConnections = fbxTree.Connections.connections; rawConnections.forEach( function ( rawConnection ) { const fromID = rawConnection[ 0 ]; const toID = rawConnection[ 1 ]; const relationship = rawConnection[ 2 ]; if ( ! connectionMap.has( fromID ) ) { connectionMap.set( fromID, { parents: [], children: [] } ); } const parentRelationship = { ID: toID, relationship: relationship }; connectionMap.get( fromID ).parents.push( parentRelationship ); if ( ! connectionMap.has( toID ) ) { connectionMap.set( toID, { parents: [], children: [] } ); } const childRelationship = { ID: fromID, relationship: relationship }; connectionMap.get( toID ).children.push( childRelationship ); } ); } return connectionMap; } // Parse FBXTree.Objects.Video for embedded image data // These images are connected to textures in FBXTree.Objects.Textures // via FBXTree.Connections. parseImages() { const images = {}; const blobs = {}; if ( 'Video' in fbxTree.Objects ) { const videoNodes = fbxTree.Objects.Video; for ( const nodeID in videoNodes ) { const videoNode = videoNodes[ nodeID ]; const id = parseInt( nodeID ); images[ id ] = videoNode.RelativeFilename || videoNode.Filename; // raw image data is in videoNode.Content if ( 'Content' in videoNode ) { const arrayBufferContent = ( videoNode.Content instanceof ArrayBuffer ) && ( videoNode.Content.byteLength > 0 ); const base64Content = ( typeof videoNode.Content === 'string' ) && ( videoNode.Content !== '' ); if ( arrayBufferContent || base64Content ) { const image = this.parseImage( videoNodes[ nodeID ] ); blobs[ videoNode.RelativeFilename || videoNode.Filename ] = image; } } } } for ( const id in images ) { const filename = images[ id ]; if ( blobs[ filename ] !== undefined ) images[ id ] = blobs[ filename ]; else images[ id ] = images[ id ].split( '\\' ).pop(); } return images; } // Parse embedded image data in FBXTree.Video.Content parseImage( videoNode ) { const content = videoNode.Content; const fileName = videoNode.RelativeFilename || videoNode.Filename; const extension = fileName.slice( fileName.lastIndexOf( '.' ) + 1 ).toLowerCase(); let type; switch ( extension ) { case 'bmp': type = 'image/bmp'; break; case 'jpg': case 'jpeg': type = 'image/jpeg'; break; case 'png': type = 'image/png'; break; case 'tif': type = 'image/tiff'; break; case 'tga': if ( this.manager.getHandler( '.tga' ) === null ) { console.warn( 'FBXLoader: TGA loader not found, skipping ', fileName ); } type = 'image/tga'; break; default: console.warn( 'FBXLoader: Image type "' + extension + '" is not supported.' ); return; } if ( typeof content === 'string' ) { // ASCII format return 'data:' + type + ';base64,' + content; } else { // Binary Format const array = new Uint8Array( content ); return window.URL.createObjectURL( new Blob( [ array ], { type: type } ) ); } } // Parse nodes in FBXTree.Objects.Texture // These contain details such as UV scaling, cropping, rotation etc and are connected // to images in FBXTree.Objects.Video parseTextures( images ) { const textureMap = new Map(); if ( 'Texture' in fbxTree.Objects ) { const textureNodes = fbxTree.Objects.Texture; for ( const nodeID in textureNodes ) { const texture = this.parseTexture( textureNodes[ nodeID ], images ); textureMap.set( parseInt( nodeID ), texture ); } } return textureMap; } // Parse individual node in FBXTree.Objects.Texture parseTexture( textureNode, images ) { const texture = this.loadTexture( textureNode, images ); texture.ID = textureNode.id; texture.name = textureNode.attrName; const wrapModeU = textureNode.WrapModeU; const wrapModeV = textureNode.WrapModeV; const valueU = wrapModeU !== undefined ? wrapModeU.value : 0; const valueV = wrapModeV !== undefined ? wrapModeV.value : 0; // http://download.autodesk.com/us/fbx/SDKdocs/FBX_SDK_Help/files/fbxsdkref/class_k_fbx_texture.html#889640e63e2e681259ea81061b85143a // 0: repeat(default), 1: clamp texture.wrapS = valueU === 0 ? RepeatWrapping : ClampToEdgeWrapping; texture.wrapT = valueV === 0 ? RepeatWrapping : ClampToEdgeWrapping; if ( 'Scaling' in textureNode ) { const values = textureNode.Scaling.value; texture.repeat.x = values[ 0 ]; texture.repeat.y = values[ 1 ]; } if ( 'Translation' in textureNode ) { const values = textureNode.Translation.value; texture.offset.x = values[ 0 ]; texture.offset.y = values[ 1 ]; } return texture; } // load a texture specified as a blob or data URI, or via an external URL using TextureLoader loadTexture( textureNode, images ) { let fileName; const currentPath = this.textureLoader.path; const children = connections.get( textureNode.id ).children; if ( children !== undefined && children.length > 0 && images[ children[ 0 ].ID ] !== undefined ) { fileName = images[ children[ 0 ].ID ]; if ( fileName.indexOf( 'blob:' ) === 0 || fileName.indexOf( 'data:' ) === 0 ) { this.textureLoader.setPath( undefined ); } } let texture; const extension = textureNode.FileName.slice( - 3 ).toLowerCase(); if ( extension === 'tga' ) { const loader = this.manager.getHandler( '.tga' ); if ( loader === null ) { console.warn( 'FBXLoader: TGA loader not found, creating placeholder texture for', textureNode.RelativeFilename ); texture = new Texture(); } else { loader.setPath( this.textureLoader.path ); texture = loader.load( fileName ); } } else if ( extension === 'dds' ) { const loader = this.manager.getHandler( '.dds' ); if ( loader === null ) { console.warn( 'FBXLoader: DDS loader not found, creating placeholder texture for', textureNode.RelativeFilename ); texture = new Texture(); } else { loader.setPath( this.textureLoader.path ); texture = loader.load( fileName ); } } else if ( extension === 'psd' ) { console.warn( 'FBXLoader: PSD textures are not supported, creating placeholder texture for', textureNode.RelativeFilename ); texture = new Texture(); } else { texture = this.textureLoader.load( fileName ); } this.textureLoader.setPath( currentPath ); return texture; } // Parse nodes in FBXTree.Objects.Material parseMaterials( textureMap ) { const materialMap = new Map(); if ( 'Material' in fbxTree.Objects ) { const materialNodes = fbxTree.Objects.Material; for ( const nodeID in materialNodes ) { const material = this.parseMaterial( materialNodes[ nodeID ], textureMap ); if ( material !== null ) materialMap.set( parseInt( nodeID ), material ); } } return materialMap; } // Parse single node in FBXTree.Objects.Material // Materials are connected to texture maps in FBXTree.Objects.Textures // FBX format currently only supports Lambert and Phong shading models parseMaterial( materialNode, textureMap ) { const ID = materialNode.id; const name = materialNode.attrName; let type = materialNode.ShadingModel; // Case where FBX wraps shading model in property object. if ( typeof type === 'object' ) { type = type.value; } // Ignore unused materials which don't have any connections. if ( ! connections.has( ID ) ) return null; const parameters = this.parseParameters( materialNode, textureMap, ID ); let material; switch ( type.toLowerCase() ) { case 'phong': material = new MeshPhongMaterial(); break; case 'lambert': material = new MeshLambertMaterial(); break; default: console.warn( 'THREE.FBXLoader: unknown material type "%s". Defaulting to MeshPhongMaterial.', type ); material = new MeshPhongMaterial(); break; } material.setValues( parameters ); material.name = name; return material; } // Parse FBX material and return parameters suitable for a three.js material // Also parse the texture map and return any textures associated with the material parseParameters( materialNode, textureMap, ID ) { const parameters = {}; if ( materialNode.BumpFactor ) { parameters.bumpScale = materialNode.BumpFactor.value; } if ( materialNode.Diffuse ) { parameters.color = new Color().fromArray( materialNode.Diffuse.value ).convertSRGBToLinear(); } else if ( materialNode.DiffuseColor && ( materialNode.DiffuseColor.type === 'Color' || materialNode.DiffuseColor.type === 'ColorRGB' ) ) { // The blender exporter exports diffuse here instead of in materialNode.Diffuse parameters.color = new Color().fromArray( materialNode.DiffuseColor.value ).convertSRGBToLinear(); } if ( materialNode.DisplacementFactor ) { parameters.displacementScale = materialNode.DisplacementFactor.value; } if ( materialNode.Emissive ) { parameters.emissive = new Color().fromArray( materialNode.Emissive.value ).convertSRGBToLinear(); } else if ( materialNode.EmissiveColor && ( materialNode.EmissiveColor.type === 'Color' || materialNode.EmissiveColor.type === 'ColorRGB' ) ) { // The blender exporter exports emissive color here instead of in materialNode.Emissive parameters.emissive = new Color().fromArray( materialNode.EmissiveColor.value ).convertSRGBToLinear(); } if ( materialNode.EmissiveFactor ) { parameters.emissiveIntensity = parseFloat( materialNode.EmissiveFactor.value ); } if ( materialNode.Opacity ) { parameters.opacity = parseFloat( materialNode.Opacity.value ); } if ( parameters.opacity < 1.0 ) { parameters.transparent = true; } if ( materialNode.ReflectionFactor ) { parameters.reflectivity = materialNode.ReflectionFactor.value; } if ( materialNode.Shininess ) { parameters.shininess = materialNode.Shininess.value; } if ( materialNode.Specular ) { parameters.specular = new Color().fromArray( materialNode.Specular.value ).convertSRGBToLinear(); } else if ( materialNode.SpecularColor && materialNode.SpecularColor.type === 'Color' ) { // The blender exporter exports specular color here instead of in materialNode.Specular parameters.specular = new Color().fromArray( materialNode.SpecularColor.value ).convertSRGBToLinear(); } const scope = this; connections.get( ID ).children.forEach( function ( child ) { const type = child.relationship; switch ( type ) { case 'Bump': parameters.bumpMap = scope.getTexture( textureMap, child.ID ); break; case 'Maya|TEX_ao_map': parameters.aoMap = scope.getTexture( textureMap, child.ID ); break; case 'DiffuseColor': case 'Maya|TEX_color_map': parameters.map = scope.getTexture( textureMap, child.ID ); if ( parameters.map !== undefined ) { parameters.map.colorSpace = SRGBColorSpace; } break; case 'DisplacementColor': parameters.displacementMap = scope.getTexture( textureMap, child.ID ); break; case 'EmissiveColor': parameters.emissiveMap = scope.getTexture( textureMap, child.ID ); if ( parameters.emissiveMap !== undefined ) { parameters.emissiveMap.colorSpace = SRGBColorSpace; } break; case 'NormalMap': case 'Maya|TEX_normal_map': parameters.normalMap = scope.getTexture( textureMap, child.ID ); break; case 'ReflectionColor': parameters.envMap = scope.getTexture( textureMap, child.ID ); if ( parameters.envMap !== undefined ) { parameters.envMap.mapping = EquirectangularReflectionMapping; parameters.envMap.colorSpace = SRGBColorSpace; } break; case 'SpecularColor': parameters.specularMap = scope.getTexture( textureMap, child.ID ); if ( parameters.specularMap !== undefined ) { parameters.specularMap.colorSpace = SRGBColorSpace; } break; case 'TransparentColor': case 'TransparencyFactor': parameters.alphaMap = scope.getTexture( textureMap, child.ID ); parameters.transparent = true; break; case 'AmbientColor': case 'ShininessExponent': // AKA glossiness map case 'SpecularFactor': // AKA specularLevel case 'VectorDisplacementColor': // NOTE: Seems to be a copy of DisplacementColor default: console.warn( 'THREE.FBXLoader: %s map is not supported in three.js, skipping texture.', type ); break; } } ); return parameters; } // get a texture from the textureMap for use by a material. getTexture( textureMap, id ) { // if the texture is a layered texture, just use the first layer and issue a warning if ( 'LayeredTexture' in fbxTree.Objects && id in fbxTree.Objects.LayeredTexture ) { console.warn( 'THREE.FBXLoader: layered textures are not supported in three.js. Discarding all but first layer.' ); id = connections.get( id ).children[ 0 ].ID; } return textureMap.get( id ); } // Parse nodes in FBXTree.Objects.Deformer // Deformer node can contain skinning or Vertex Cache animation data, however only skinning is supported here // Generates map of Skeleton-like objects for use later when generating and binding skeletons. parseDeformers() { const skeletons = {}; const morphTargets = {}; if ( 'Deformer' in fbxTree.Objects ) { const DeformerNodes = fbxTree.Objects.Deformer; for ( const nodeID in DeformerNodes ) { const deformerNode = DeformerNodes[ nodeID ]; const relationships = connections.get( parseInt( nodeID ) ); if ( deformerNode.attrType === 'Skin' ) { const skeleton = this.parseSkeleton( relationships, DeformerNodes ); skeleton.ID = nodeID; if ( relationships.parents.length > 1 ) console.warn( 'THREE.FBXLoader: skeleton attached to more than one geometry is not supported.' ); skeleton.geometryID = relationships.parents[ 0 ].ID; skeletons[ nodeID ] = skeleton; } else if ( deformerNode.attrType === 'BlendShape' ) { const morphTarget = { id: nodeID, }; morphTarget.rawTargets = this.parseMorphTargets( relationships, DeformerNodes ); morphTarget.id = nodeID; if ( relationships.parents.length > 1 ) console.warn( 'THREE.FBXLoader: morph target attached to more than one geometry is not supported.' ); morphTargets[ nodeID ] = morphTarget; } } } return { skeletons: skeletons, morphTargets: morphTargets, }; } // Parse single nodes in FBXTree.Objects.Deformer // The top level skeleton node has type 'Skin' and sub nodes have type 'Cluster' // Each skin node represents a skeleton and each cluster node represents a bone parseSkeleton( relationships, deformerNodes ) { const rawBones = []; relationships.children.forEach( function ( child ) { const boneNode = deformerNodes[ child.ID ]; if ( boneNode.attrType !== 'Cluster' ) return; const rawBone = { ID: child.ID, indices: [], weights: [], transformLink: new Matrix4().fromArray( boneNode.TransformLink.a ), // transform: new Matrix4().fromArray( boneNode.Transform.a ), // linkMode: boneNode.Mode, }; if ( 'Indexes' in boneNode ) { rawBone.indices = boneNode.Indexes.a; rawBone.weights = boneNode.Weights.a; } rawBones.push( rawBone ); } ); return { rawBones: rawBones, bones: [] }; } // The top level morph deformer node has type "BlendShape" and sub nodes have type "BlendShapeChannel" parseMorphTargets( relationships, deformerNodes ) { const rawMorphTargets = []; for ( let i = 0; i < relationships.children.length; i ++ ) { const child = relationships.children[ i ]; const morphTargetNode = deformerNodes[ child.ID ]; const rawMorphTarget = { name: morphTargetNode.attrName, initialWeight: morphTargetNode.DeformPercent, id: morphTargetNode.id, fullWeights: morphTargetNode.FullWeights.a }; if ( morphTargetNode.attrType !== 'BlendShapeChannel' ) return; rawMorphTarget.geoID = connections.get( parseInt( child.ID ) ).children.filter( function ( child ) { return child.relationship === undefined; } )[ 0 ].ID; rawMorphTargets.push( rawMorphTarget ); } return rawMorphTargets; } // create the main Group() to be returned by the loader parseScene( deformers, geometryMap, materialMap ) { sceneGraph = new Group(); const modelMap = this.parseModels( deformers.skeletons, geometryMap, materialMap ); const modelNodes = fbxTree.Objects.Model; const scope = this; modelMap.forEach( function ( model ) { const modelNode = modelNodes[ model.ID ]; scope.setLookAtProperties( model, modelNode ); const parentConnections = connections.get( model.ID ).parents; parentConnections.forEach( function ( connection ) { const parent = modelMap.get( connection.ID ); if ( parent !== undefined ) parent.add( model ); } ); if ( model.parent === null ) { sceneGraph.add( model ); } } ); this.bindSkeleton( deformers.skeletons, geometryMap, modelMap ); this.addGlobalSceneSettings(); sceneGraph.traverse( function ( node ) { if ( node.userData.transformData ) { if ( node.parent ) { node.userData.transformData.parentMatrix = node.parent.matrix; node.userData.transformData.parentMatrixWorld = node.parent.matrixWorld; } const transform = generateTransform( node.userData.transformData ); node.applyMatrix4( transform ); node.updateWorldMatrix(); } } ); const animations = new AnimationParser().parse(); // if all the models where already combined in a single group, just return that if ( sceneGraph.children.length === 1 && sceneGraph.children[ 0 ].isGroup ) { sceneGraph.children[ 0 ].animations = animations; sceneGraph = sceneGraph.children[ 0 ]; } sceneGraph.animations = animations; } // parse nodes in FBXTree.Objects.Model parseModels( skeletons, geometryMap, materialMap ) { const modelMap = new Map(); const modelNodes = fbxTree.Objects.Model; for ( const nodeID in modelNodes ) { const id = parseInt( nodeID ); const node = modelNodes[ nodeID ]; const relationships = connections.get( id ); let model = this.buildSkeleton( relationships, skeletons, id, node.attrName ); if ( ! model ) { switch ( node.attrType ) { case 'Camera': model = this.createCamera( relationships ); break; case 'Light': model = this.createLight( relationships ); break; case 'Mesh': model = this.createMesh( relationships, geometryMap, materialMap ); break; case 'NurbsCurve': model = this.createCurve( relationships, geometryMap ); break; case 'LimbNode': case 'Root': model = new Bone(); break; case 'Null': default: model = new Group(); break; } model.name = node.attrName ? PropertyBinding.sanitizeNodeName( node.attrName ) : ''; model.userData.originalName = node.attrName; model.ID = id; } this.getTransformData( model, node ); modelMap.set( id, model ); } return modelMap; } buildSkeleton( relationships, skeletons, id, name ) { let bone = null; relationships.parents.forEach( function ( parent ) { for ( const ID in skeletons ) { const skeleton = skeletons[ ID ]; skeleton.rawBones.forEach( function ( rawBone, i ) { if ( rawBone.ID === parent.ID ) { const subBone = bone; bone = new Bone(); bone.matrixWorld.copy( rawBone.transformLink ); // set name and id here - otherwise in cases where "subBone" is created it will not have a name / id bone.name = name ? PropertyBinding.sanitizeNodeName( name ) : ''; bone.userData.originalName = name; bone.ID = id; skeleton.bones[ i ] = bone; // In cases where a bone is shared between multiple meshes // duplicate the bone here and and it as a child of the first bone if ( subBone !== null ) { bone.add( subBone ); } } } ); } } ); return bone; } // create a PerspectiveCamera or OrthographicCamera createCamera( relationships ) { let model; let cameraAttribute; relationships.children.forEach( function ( child ) { const attr = fbxTree.Objects.NodeAttribute[ child.ID ]; if ( attr !== undefined ) { cameraAttribute = attr; } } ); if ( cameraAttribute === undefined ) { model = new Object3D(); } else { let type = 0; if ( cameraAttribute.CameraProjectionType !== undefined && cameraAttribute.CameraProjectionType.value === 1 ) { type = 1; } let nearClippingPlane = 1; if ( cameraAttribute.NearPlane !== undefined ) { nearClippingPlane = cameraAttribute.NearPlane.value / 1000; } let farClippingPlane = 1000; if ( cameraAttribute.FarPlane !== undefined ) { farClippingPlane = cameraAttribute.FarPlane.value / 1000; } let width = window.innerWidth; let height = window.innerHeight; if ( cameraAttribute.AspectWidth !== undefined && cameraAttribute.AspectHeight !== undefined ) { width = cameraAttribute.AspectWidth.value; height = cameraAttribute.AspectHeight.value; } const aspect = width / height; let fov = 45; if ( cameraAttribute.FieldOfView !== undefined ) { fov = cameraAttribute.FieldOfView.value; } const focalLength = cameraAttribute.FocalLength ? cameraAttribute.FocalLength.value : null; switch ( type ) { case 0: // Perspective model = new PerspectiveCamera( fov, aspect, nearClippingPlane, farClippingPlane ); if ( focalLength !== null ) model.setFocalLength( focalLength ); break; case 1: // Orthographic model = new OrthographicCamera( - width / 2, width / 2, height / 2, - height / 2, nearClippingPlane, farClippingPlane ); break; default: console.warn( 'THREE.FBXLoader: Unknown camera type ' + type + '.' ); model = new Object3D(); break; } } return model; } // Create a DirectionalLight, PointLight or SpotLight createLight( relationships ) { let model; let lightAttribute; relationships.children.forEach( function ( child ) { const attr = fbxTree.Objects.NodeAttribute[ child.ID ]; if ( attr !== undefined ) { lightAttribute = attr; } } ); if ( lightAttribute === undefined ) { model = new Object3D(); } else { let type; // LightType can be undefined for Point lights if ( lightAttribute.LightType === undefined ) { type = 0; } else { type = lightAttribute.LightType.value; } let color = 0xffffff; if ( lightAttribute.Color !== undefined ) { color = new Color().fromArray( lightAttribute.Color.value ).convertSRGBToLinear(); } let intensity = ( lightAttribute.Intensity === undefined ) ? 1 : lightAttribute.Intensity.value / 100; // light disabled if ( lightAttribute.CastLightOnObject !== undefined && lightAttribute.CastLightOnObject.value === 0 ) { intensity = 0; } let distance = 0; if ( lightAttribute.FarAttenuationEnd !== undefined ) { if ( lightAttribute.EnableFarAttenuation !== undefined && lightAttribute.EnableFarAttenuation.value === 0 ) { distance = 0; } else { distance = lightAttribute.FarAttenuationEnd.value; } } // TODO: could this be calculated linearly from FarAttenuationStart to FarAttenuationEnd? const decay = 1; switch ( type ) { case 0: // Point model = new PointLight( color, intensity, distance, decay ); break; case 1: // Directional model = new DirectionalLight( color, intensity ); break; case 2: // Spot let angle = Math.PI / 3; if ( lightAttribute.InnerAngle !== undefined ) { angle = MathUtils.degToRad( lightAttribute.InnerAngle.value ); } let penumbra = 0; if ( lightAttribute.OuterAngle !== undefined ) { // TODO: this is not correct - FBX calculates outer and inner angle in degrees // with OuterAngle > InnerAngle && OuterAngle <= Math.PI // while three.js uses a penumbra between (0, 1) to attenuate the inner angle penumbra = MathUtils.degToRad( lightAttribute.OuterAngle.value ); penumbra = Math.max( penumbra, 1 ); } model = new SpotLight( color, intensity, distance, angle, penumbra, decay ); break; default: console.warn( 'THREE.FBXLoader: Unknown light type ' + lightAttribute.LightType.value + ', defaulting to a PointLight.' ); model = new PointLight( color, intensity ); break; } if ( lightAttribute.CastShadows !== undefined && lightAttribute.CastShadows.value === 1 ) { model.castShadow = true; } } return model; } createMesh( relationships, geometryMap, materialMap ) { let model; let geometry = null; let material = null; const materials = []; // get geometry and materials(s) from connections relationships.children.forEach( function ( child ) { if ( geometryMap.has( child.ID ) ) { geometry = geometryMap.get( child.ID ); } if ( materialMap.has( child.ID ) ) { materials.push( materialMap.get( child.ID ) ); } } ); if ( materials.length > 1 ) { material = materials; } else if ( materials.length > 0 ) { material = materials[ 0 ]; } else { material = new MeshPhongMaterial( { name: Loader.DEFAULT_MATERIAL_NAME, color: 0xcccccc } ); materials.push( material ); } if ( 'color' in geometry.attributes ) { materials.forEach( function ( material ) { material.vertexColors = true; } ); } if ( geometry.FBX_Deformer ) { model = new SkinnedMesh( geometry, material ); model.normalizeSkinWeights(); } else { model = new Mesh( geometry, material ); } return model; } createCurve( relationships, geometryMap ) { const geometry = relationships.children.reduce( function ( geo, child ) { if ( geometryMap.has( child.ID ) ) geo = geometryMap.get( child.ID ); return geo; }, null ); // FBX does not list materials for Nurbs lines, so we'll just put our own in here. const material = new LineBasicMaterial( { name: Loader.DEFAULT_MATERIAL_NAME, color: 0x3300ff, linewidth: 1 } ); return new Line( geometry, material ); } // parse the model node for transform data getTransformData( model, modelNode ) { const transformData = {}; if ( 'InheritType' in modelNode ) transformData.inheritType = parseInt( modelNode.InheritType.value ); if ( 'RotationOrder' in modelNode ) transformData.eulerOrder = getEulerOrder( modelNode.RotationOrder.value ); else transformData.eulerOrder = 'ZYX'; if ( 'Lcl_Translation' in modelNode ) transformData.translation = modelNode.Lcl_Translation.value; if ( 'PreRotation' in modelNode ) transformData.preRotation = modelNode.PreRotation.value; if ( 'Lcl_Rotation' in modelNode ) transformData.rotation = modelNode.Lcl_Rotation.value; if ( 'PostRotation' in modelNode ) transformData.postRotation = modelNode.PostRotation.value; if ( 'Lcl_Scaling' in modelNode ) transformData.scale = modelNode.Lcl_Scaling.value; if ( 'ScalingOffset' in modelNode ) transformData.scalingOffset = modelNode.ScalingOffset.value; if ( 'ScalingPivot' in modelNode ) transformData.scalingPivot = modelNode.ScalingPivot.value; if ( 'RotationOffset' in modelNode ) transformData.rotationOffset = modelNode.RotationOffset.value; if ( 'RotationPivot' in modelNode ) transformData.rotationPivot = modelNode.RotationPivot.value; model.userData.transformData = transformData; } setLookAtProperties( model, modelNode ) { if ( 'LookAtProperty' in modelNode ) { const children = connections.get( model.ID ).children; children.forEach( function ( child ) { if ( child.relationship === 'LookAtProperty' ) { const lookAtTarget = fbxTree.Objects.Model[ child.ID ]; if ( 'Lcl_Translation' in lookAtTarget ) { const pos = lookAtTarget.Lcl_Translation.value; // DirectionalLight, SpotLight if ( model.target !== undefined ) { model.target.position.fromArray( pos ); sceneGraph.add( model.target ); } else { // Cameras and other Object3Ds model.lookAt( new Vector3().fromArray( pos ) ); } } } } ); } } bindSkeleton( skeletons, geometryMap, modelMap ) { const bindMatrices = this.parsePoseNodes(); for ( const ID in skeletons ) { const skeleton = skeletons[ ID ]; const parents = connections.get( parseInt( skeleton.ID ) ).parents; parents.forEach( function ( parent ) { if ( geometryMap.has( parent.ID ) ) { const geoID = parent.ID; const geoRelationships = connections.get( geoID ); geoRelationships.parents.forEach( function ( geoConnParent ) { if ( modelMap.has( geoConnParent.ID ) ) { const model = modelMap.get( geoConnParent.ID ); model.bind( new Skeleton( skeleton.bones ), bindMatrices[ geoConnParent.ID ] ); } } ); } } ); } } parsePoseNodes() { const bindMatrices = {}; if ( 'Pose' in fbxTree.Objects ) { const BindPoseNode = fbxTree.Objects.Pose; for ( const nodeID in BindPoseNode ) { if ( BindPoseNode[ nodeID ].attrType === 'BindPose' && BindPoseNode[ nodeID ].NbPoseNodes > 0 ) { const poseNodes = BindPoseNode[ nodeID ].PoseNode; if ( Array.isArray( poseNodes ) ) { poseNodes.forEach( function ( poseNode ) { bindMatrices[ poseNode.Node ] = new Matrix4().fromArray( poseNode.Matrix.a ); } ); } else { bindMatrices[ poseNodes.Node ] = new Matrix4().fromArray( poseNodes.Matrix.a ); } } } } return bindMatrices; } addGlobalSceneSettings() { if ( 'GlobalSettings' in fbxTree ) { if ( 'AmbientColor' in fbxTree.GlobalSettings ) { // Parse ambient color - if it's not set to black (default), create an ambient light const ambientColor = fbxTree.GlobalSettings.AmbientColor.value; const r = ambientColor[ 0 ]; const g = ambientColor[ 1 ]; const b = ambientColor[ 2 ]; if ( r !== 0 || g !== 0 || b !== 0 ) { const color = new Color( r, g, b ).convertSRGBToLinear(); sceneGraph.add( new AmbientLight( color, 1 ) ); } } if ( 'UnitScaleFactor' in fbxTree.GlobalSettings ) { sceneGraph.userData.unitScaleFactor = fbxTree.GlobalSettings.UnitScaleFactor.value; } } } } // parse Geometry data from FBXTree and return map of BufferGeometries class GeometryParser { constructor() { this.negativeMaterialIndices = false; } // Parse nodes in FBXTree.Objects.Geometry parse( deformers ) { const geometryMap = new Map(); if ( 'Geometry' in fbxTree.Objects ) { const geoNodes = fbxTree.Objects.Geometry; for ( const nodeID in geoNodes ) { const relationships = connections.get( parseInt( nodeID ) ); const geo = this.parseGeometry( relationships, geoNodes[ nodeID ], deformers ); geometryMap.set( parseInt( nodeID ), geo ); } } // report warnings if ( this.negativeMaterialIndices === true ) { console.warn( 'THREE.FBXLoader: The FBX file contains invalid (negative) material indices. The asset might not render as expected.' ); } return geometryMap; } // Parse single node in FBXTree.Objects.Geometry parseGeometry( relationships, geoNode, deformers ) { switch ( geoNode.attrType ) { case 'Mesh': return this.parseMeshGeometry( relationships, geoNode, deformers ); break; case 'NurbsCurve': return this.parseNurbsGeometry( geoNode ); break; } } // Parse single node mesh geometry in FBXTree.Objects.Geometry parseMeshGeometry( relationships, geoNode, deformers ) { const skeletons = deformers.skeletons; const morphTargets = []; const modelNodes = relationships.parents.map( function ( parent ) { return fbxTree.Objects.Model[ parent.ID ]; } ); // don't create geometry if it is not associated with any models if ( modelNodes.length === 0 ) return; const skeleton = relationships.children.reduce( function ( skeleton, child ) { if ( skeletons[ child.ID ] !== undefined ) skeleton = skeletons[ child.ID ]; return skeleton; }, null ); relationships.children.forEach( function ( child ) { if ( deformers.morphTargets[ child.ID ] !== undefined ) { morphTargets.push( deformers.morphTargets[ child.ID ] ); } } ); // Assume one model and get the preRotation from that // if there is more than one model associated with the geometry this may cause problems const modelNode = modelNodes[ 0 ]; const transformData = {}; if ( 'RotationOrder' in modelNode ) transformData.eulerOrder = getEulerOrder( modelNode.RotationOrder.value ); if ( 'InheritType' in modelNode ) transformData.inheritType = parseInt( modelNode.InheritType.value ); if ( 'GeometricTranslation' in modelNode ) transformData.translation = modelNode.GeometricTranslation.value; if ( 'GeometricRotation' in modelNode ) transformData.rotation = modelNode.GeometricRotation.value; if ( 'GeometricScaling' in modelNode ) transformData.scale = modelNode.GeometricScaling.value; const transform = generateTransform( transformData ); return this.genGeometry( geoNode, skeleton, morphTargets, transform ); } // Generate a BufferGeometry from a node in FBXTree.Objects.Geometry genGeometry( geoNode, skeleton, morphTargets, preTransform ) { const geo = new BufferGeometry(); if ( geoNode.attrName ) geo.name = geoNode.attrName; const geoInfo = this.parseGeoNode( geoNode, skeleton ); const buffers = this.genBuffers( geoInfo ); const positionAttribute = new Float32BufferAttribute( buffers.vertex, 3 ); positionAttribute.applyMatrix4( preTransform ); geo.setAttribute( 'position', positionAttribute ); if ( buffers.colors.length > 0 ) { geo.setAttribute( 'color', new Float32BufferAttribute( buffers.colors, 3 ) ); } if ( skeleton ) { geo.setAttribute( 'skinIndex', new Uint16BufferAttribute( buffers.weightsIndices, 4 ) ); geo.setAttribute( 'skinWeight', new Float32BufferAttribute( buffers.vertexWeights, 4 ) ); // used later to bind the skeleton to the model geo.FBX_Deformer = skeleton; } if ( buffers.normal.length > 0 ) { const normalMatrix = new Matrix3().getNormalMatrix( preTransform ); const normalAttribute = new Float32BufferAttribute( buffers.normal, 3 ); normalAttribute.applyNormalMatrix( normalMatrix ); geo.setAttribute( 'normal', normalAttribute ); } buffers.uvs.forEach( function ( uvBuffer, i ) { const name = i === 0 ? 'uv' : `uv${ i }`; geo.setAttribute( name, new Float32BufferAttribute( buffers.uvs[ i ], 2 ) ); } ); if ( geoInfo.material && geoInfo.material.mappingType !== 'AllSame' ) { // Convert the material indices of each vertex into rendering groups on the geometry. let prevMaterialIndex = buffers.materialIndex[ 0 ]; let startIndex = 0; buffers.materialIndex.forEach( function ( currentIndex, i ) { if ( currentIndex !== prevMaterialIndex ) { geo.addGroup( startIndex, i - startIndex, prevMaterialIndex ); prevMaterialIndex = currentIndex; startIndex = i; } } ); // the loop above doesn't add the last group, do that here. if ( geo.groups.length > 0 ) { const lastGroup = geo.groups[ geo.groups.length - 1 ]; const lastIndex = lastGroup.start + lastGroup.count; if ( lastIndex !== buffers.materialIndex.length ) { geo.addGroup( lastIndex, buffers.materialIndex.length - lastIndex, prevMaterialIndex ); } } // case where there are multiple materials but the whole geometry is only // using one of them if ( geo.groups.length === 0 ) { geo.addGroup( 0, buffers.materialIndex.length, buffers.materialIndex[ 0 ] ); } } this.addMorphTargets( geo, geoNode, morphTargets, preTransform ); return geo; } parseGeoNode( geoNode, skeleton ) { const geoInfo = {}; geoInfo.vertexPositions = ( geoNode.Vertices !== undefined ) ? geoNode.Vertices.a : []; geoInfo.vertexIndices = ( geoNode.PolygonVertexIndex !== undefined ) ? geoNode.PolygonVertexIndex.a : []; if ( geoNode.LayerElementColor ) { geoInfo.color = this.parseVertexColors( geoNode.LayerElementColor[ 0 ] ); } if ( geoNode.LayerElementMaterial ) { geoInfo.material = this.parseMaterialIndices( geoNode.LayerElementMaterial[ 0 ] ); } if ( geoNode.LayerElementNormal ) { geoInfo.normal = this.parseNormals( geoNode.LayerElementNormal[ 0 ] ); } if ( geoNode.LayerElementUV ) { geoInfo.uv = []; let i = 0; while ( geoNode.LayerElementUV[ i ] ) { if ( geoNode.LayerElementUV[ i ].UV ) { geoInfo.uv.push( this.parseUVs( geoNode.LayerElementUV[ i ] ) ); } i ++; } } geoInfo.weightTable = {}; if ( skeleton !== null ) { geoInfo.skeleton = skeleton; skeleton.rawBones.forEach( function ( rawBone, i ) { // loop over the bone's vertex indices and weights rawBone.indices.forEach( function ( index, j ) { if ( geoInfo.weightTable[ index ] === undefined ) geoInfo.weightTable[ index ] = []; geoInfo.weightTable[ index ].push( { id: i, weight: rawBone.weights[ j ], } ); } ); } ); } return geoInfo; } genBuffers( geoInfo ) { const buffers = { vertex: [], normal: [], colors: [], uvs: [], materialIndex: [], vertexWeights: [], weightsIndices: [], }; let polygonIndex = 0; let faceLength = 0; let displayedWeightsWarning = false; // these will hold data for a single face let facePositionIndexes = []; let faceNormals = []; let faceColors = []; let faceUVs = []; let faceWeights = []; let faceWeightIndices = []; const scope = this; geoInfo.vertexIndices.forEach( function ( vertexIndex, polygonVertexIndex ) { let materialIndex; let endOfFace = false; // Face index and vertex index arrays are combined in a single array // A cube with quad faces looks like this: // PolygonVertexIndex: *24 { // a: 0, 1, 3, -3, 2, 3, 5, -5, 4, 5, 7, -7, 6, 7, 1, -1, 1, 7, 5, -4, 6, 0, 2, -5 // } // Negative numbers mark the end of a face - first face here is 0, 1, 3, -3 // to find index of last vertex bit shift the index: ^ - 1 if ( vertexIndex < 0 ) { vertexIndex = vertexIndex ^ - 1; // equivalent to ( x * -1 ) - 1 endOfFace = true; } let weightIndices = []; let weights = []; facePositionIndexes.push( vertexIndex * 3, vertexIndex * 3 + 1, vertexIndex * 3 + 2 ); if ( geoInfo.color ) { const data = getData( polygonVertexIndex, polygonIndex, vertexIndex, geoInfo.color ); faceColors.push( data[ 0 ], data[ 1 ], data[ 2 ] ); } if ( geoInfo.skeleton ) { if ( geoInfo.weightTable[ vertexIndex ] !== undefined ) { geoInfo.weightTable[ vertexIndex ].forEach( function ( wt ) { weights.push( wt.weight ); weightIndices.push( wt.id ); } ); } if ( weights.length > 4 ) { if ( ! displayedWeightsWarning ) { console.warn( 'THREE.FBXLoader: Vertex has more than 4 skinning weights assigned to vertex. Deleting additional weights.' ); displayedWeightsWarning = true; } const wIndex = [ 0, 0, 0, 0 ]; const Weight = [ 0, 0, 0, 0 ]; weights.forEach( function ( weight, weightIndex ) { let currentWeight = weight; let currentIndex = weightIndices[ weightIndex ]; Weight.forEach( function ( comparedWeight, comparedWeightIndex, comparedWeightArray ) { if ( currentWeight > comparedWeight ) { comparedWeightArray[ comparedWeightIndex ] = currentWeight; currentWeight = comparedWeight; const tmp = wIndex[ comparedWeightIndex ]; wIndex[ comparedWeightIndex ] = currentIndex; currentIndex = tmp; } } ); } ); weightIndices = wIndex; weights = Weight; } // if the weight array is shorter than 4 pad with 0s while ( weights.length < 4 ) { weights.push( 0 ); weightIndices.push( 0 ); } for ( let i = 0; i < 4; ++ i ) { faceWeights.push( weights[ i ] ); faceWeightIndices.push( weightIndices[ i ] ); } } if ( geoInfo.normal ) { const data = getData( polygonVertexIndex, polygonIndex, vertexIndex, geoInfo.normal ); faceNormals.push( data[ 0 ], data[ 1 ], data[ 2 ] ); } if ( geoInfo.material && geoInfo.material.mappingType !== 'AllSame' ) { materialIndex = getData( polygonVertexIndex, polygonIndex, vertexIndex, geoInfo.material )[ 0 ]; if ( materialIndex < 0 ) { scope.negativeMaterialIndices = true; materialIndex = 0; // fallback } } if ( geoInfo.uv ) { geoInfo.uv.forEach( function ( uv, i ) { const data = getData( polygonVertexIndex, polygonIndex, vertexIndex, uv ); if ( faceUVs[ i ] === undefined ) { faceUVs[ i ] = []; } faceUVs[ i ].push( data[ 0 ] ); faceUVs[ i ].push( data[ 1 ] ); } ); } faceLength ++; if ( endOfFace ) { scope.genFace( buffers, geoInfo, facePositionIndexes, materialIndex, faceNormals, faceColors, faceUVs, faceWeights, faceWeightIndices, faceLength ); polygonIndex ++; faceLength = 0; // reset arrays for the next face facePositionIndexes = []; faceNormals = []; faceColors = []; faceUVs = []; faceWeights = []; faceWeightIndices = []; } } ); return buffers; } // See https://www.khronos.org/opengl/wiki/Calculating_a_Surface_Normal getNormalNewell( vertices ) { const normal = new Vector3( 0.0, 0.0, 0.0 ); for ( let i = 0; i < vertices.length; i ++ ) { const current = vertices[ i ]; const next = vertices[ ( i + 1 ) % vertices.length ]; normal.x += ( current.y - next.y ) * ( current.z + next.z ); normal.y += ( current.z - next.z ) * ( current.x + next.x ); normal.z += ( current.x - next.x ) * ( current.y + next.y ); } normal.normalize(); return normal; } getNormalTangentAndBitangent( vertices ) { const normalVector = this.getNormalNewell( vertices ); // Avoid up being equal or almost equal to normalVector const up = Math.abs( normalVector.z ) > 0.5 ? new Vector3( 0.0, 1.0, 0.0 ) : new Vector3( 0.0, 0.0, 1.0 ); const tangent = up.cross( normalVector ).normalize(); const bitangent = normalVector.clone().cross( tangent ).normalize(); return { normal: normalVector, tangent: tangent, bitangent: bitangent }; } flattenVertex( vertex, normalTangent, normalBitangent ) { return new Vector2( vertex.dot( normalTangent ), vertex.dot( normalBitangent ) ); } // Generate data for a single face in a geometry. If the face is a quad then split it into 2 tris genFace( buffers, geoInfo, facePositionIndexes, materialIndex, faceNormals, faceColors, faceUVs, faceWeights, faceWeightIndices, faceLength ) { let triangles; if ( faceLength > 3 ) { // Triangulate n-gon using earcut const vertices = []; for ( let i = 0; i < facePositionIndexes.length; i += 3 ) { vertices.push( new Vector3( geoInfo.vertexPositions[ facePositionIndexes[ i ] ], geoInfo.vertexPositions[ facePositionIndexes[ i + 1 ] ], geoInfo.vertexPositions[ facePositionIndexes[ i + 2 ] ] ) ); } const { tangent, bitangent } = this.getNormalTangentAndBitangent( vertices ); const triangulationInput = []; for ( const vertex of vertices ) { triangulationInput.push( this.flattenVertex( vertex, tangent, bitangent ) ); } triangles = ShapeUtils.triangulateShape( triangulationInput, [] ); } else { // Regular triangle, skip earcut triangulation step triangles = [[ 0, 1, 2 ]]; } for ( const [ i0, i1, i2 ] of triangles ) { buffers.vertex.push( geoInfo.vertexPositions[ facePositionIndexes[ i0 * 3 ] ] ); buffers.vertex.push( geoInfo.vertexPositions[ facePositionIndexes[ i0 * 3 + 1 ] ] ); buffers.vertex.push( geoInfo.vertexPositions[ facePositionIndexes[ i0 * 3 + 2 ] ] ); buffers.vertex.push( geoInfo.vertexPositions[ facePositionIndexes[ i1 * 3 ] ] ); buffers.vertex.push( geoInfo.vertexPositions[ facePositionIndexes[ i1 * 3 + 1 ] ] ); buffers.vertex.push( geoInfo.vertexPositions[ facePositionIndexes[ i1 * 3 + 2 ] ] ); buffers.vertex.push( geoInfo.vertexPositions[ facePositionIndexes[ i2 * 3 ] ] ); buffers.vertex.push( geoInfo.vertexPositions[ facePositionIndexes[ i2 * 3 + 1 ] ] ); buffers.vertex.push( geoInfo.vertexPositions[ facePositionIndexes[ i2 * 3 + 2 ] ] ); if ( geoInfo.skeleton ) { buffers.vertexWeights.push( faceWeights[ i0 * 4 ] ); buffers.vertexWeights.push( faceWeights[ i0 * 4 + 1 ] ); buffers.vertexWeights.push( faceWeights[ i0 * 4 + 2 ] ); buffers.vertexWeights.push( faceWeights[ i0 * 4 + 3 ] ); buffers.vertexWeights.push( faceWeights[ i1 * 4 ] ); buffers.vertexWeights.push( faceWeights[ i1 * 4 + 1 ] ); buffers.vertexWeights.push( faceWeights[ i1 * 4 + 2 ] ); buffers.vertexWeights.push( faceWeights[ i1 * 4 + 3 ] ); buffers.vertexWeights.push( faceWeights[ i2 * 4 ] ); buffers.vertexWeights.push( faceWeights[ i2 * 4 + 1 ] ); buffers.vertexWeights.push( faceWeights[ i2 * 4 + 2 ] ); buffers.vertexWeights.push( faceWeights[ i2 * 4 + 3 ] ); buffers.weightsIndices.push( faceWeightIndices[ i0 * 4 ] ); buffers.weightsIndices.push( faceWeightIndices[ i0 * 4 + 1 ] ); buffers.weightsIndices.push( faceWeightIndices[ i0 * 4 + 2 ] ); buffers.weightsIndices.push( faceWeightIndices[ i0 * 4 + 3 ] ); buffers.weightsIndices.push( faceWeightIndices[ i1 * 4 ] ); buffers.weightsIndices.push( faceWeightIndices[ i1 * 4 + 1 ] ); buffers.weightsIndices.push( faceWeightIndices[ i1 * 4 + 2 ] ); buffers.weightsIndices.push( faceWeightIndices[ i1 * 4 + 3 ] ); buffers.weightsIndices.push( faceWeightIndices[ i2 * 4 ] ); buffers.weightsIndices.push( faceWeightIndices[ i2 * 4 + 1 ] ); buffers.weightsIndices.push( faceWeightIndices[ i2 * 4 + 2 ] ); buffers.weightsIndices.push( faceWeightIndices[ i2 * 4 + 3 ] ); } if ( geoInfo.color ) { buffers.colors.push( faceColors[ i0 * 3 ] ); buffers.colors.push( faceColors[ i0 * 3 + 1 ] ); buffers.colors.push( faceColors[ i0 * 3 + 2 ] ); buffers.colors.push( faceColors[ i1 * 3 ] ); buffers.colors.push( faceColors[ i1 * 3 + 1 ] ); buffers.colors.push( faceColors[ i1 * 3 + 2 ] ); buffers.colors.push( faceColors[ i2 * 3 ] ); buffers.colors.push( faceColors[ i2 * 3 + 1 ] ); buffers.colors.push( faceColors[ i2 * 3 + 2 ] ); } if ( geoInfo.material && geoInfo.material.mappingType !== 'AllSame' ) { buffers.materialIndex.push( materialIndex ); buffers.materialIndex.push( materialIndex ); buffers.materialIndex.push( materialIndex ); } if ( geoInfo.normal ) { buffers.normal.push( faceNormals[ i0 * 3 ] ); buffers.normal.push( faceNormals[ i0 * 3 + 1 ] ); buffers.normal.push( faceNormals[ i0 * 3 + 2 ] ); buffers.normal.push( faceNormals[ i1 * 3 ] ); buffers.normal.push( faceNormals[ i1 * 3 + 1 ] ); buffers.normal.push( faceNormals[ i1 * 3 + 2 ] ); buffers.normal.push( faceNormals[ i2 * 3 ] ); buffers.normal.push( faceNormals[ i2 * 3 + 1 ] ); buffers.normal.push( faceNormals[ i2 * 3 + 2 ] ); } if ( geoInfo.uv ) { geoInfo.uv.forEach( function ( uv, j ) { if ( buffers.uvs[ j ] === undefined ) buffers.uvs[ j ] = []; buffers.uvs[ j ].push( faceUVs[ j ][ i0 * 2 ] ); buffers.uvs[ j ].push( faceUVs[ j ][ i0 * 2 + 1 ] ); buffers.uvs[ j ].push( faceUVs[ j ][ i1 * 2 ] ); buffers.uvs[ j ].push( faceUVs[ j ][ i1 * 2 + 1 ] ); buffers.uvs[ j ].push( faceUVs[ j ][ i2 * 2 ] ); buffers.uvs[ j ].push( faceUVs[ j ][ i2 * 2 + 1 ] ); } ); } } } addMorphTargets( parentGeo, parentGeoNode, morphTargets, preTransform ) { if ( morphTargets.length === 0 ) return; parentGeo.morphTargetsRelative = true; parentGeo.morphAttributes.position = []; // parentGeo.morphAttributes.normal = []; // not implemented const scope = this; morphTargets.forEach( function ( morphTarget ) { morphTarget.rawTargets.forEach( function ( rawTarget ) { const morphGeoNode = fbxTree.Objects.Geometry[ rawTarget.geoID ]; if ( morphGeoNode !== undefined ) { scope.genMorphGeometry( parentGeo, parentGeoNode, morphGeoNode, preTransform, rawTarget.name ); } } ); } ); } // a morph geometry node is similar to a standard node, and the node is also contained // in FBXTree.Objects.Geometry, however it can only have attributes for position, normal // and a special attribute Index defining which vertices of the original geometry are affected // Normal and position attributes only have data for the vertices that are affected by the morph genMorphGeometry( parentGeo, parentGeoNode, morphGeoNode, preTransform, name ) { const vertexIndices = ( parentGeoNode.PolygonVertexIndex !== undefined ) ? parentGeoNode.PolygonVertexIndex.a : []; const morphPositionsSparse = ( morphGeoNode.Vertices !== undefined ) ? morphGeoNode.Vertices.a : []; const indices = ( morphGeoNode.Indexes !== undefined ) ? morphGeoNode.Indexes.a : []; const length = parentGeo.attributes.position.count * 3; const morphPositions = new Float32Array( length ); for ( let i = 0; i < indices.length; i ++ ) { const morphIndex = indices[ i ] * 3; morphPositions[ morphIndex ] = morphPositionsSparse[ i * 3 ]; morphPositions[ morphIndex + 1 ] = morphPositionsSparse[ i * 3 + 1 ]; morphPositions[ morphIndex + 2 ] = morphPositionsSparse[ i * 3 + 2 ]; } // TODO: add morph normal support const morphGeoInfo = { vertexIndices: vertexIndices, vertexPositions: morphPositions, }; const morphBuffers = this.genBuffers( morphGeoInfo ); const positionAttribute = new Float32BufferAttribute( morphBuffers.vertex, 3 ); positionAttribute.name = name || morphGeoNode.attrName; positionAttribute.applyMatrix4( preTransform ); parentGeo.morphAttributes.position.push( positionAttribute ); } // Parse normal from FBXTree.Objects.Geometry.LayerElementNormal if it exists parseNormals( NormalNode ) { const mappingType = NormalNode.MappingInformationType; const referenceType = NormalNode.ReferenceInformationType; const buffer = NormalNode.Normals.a; let indexBuffer = []; if ( referenceType === 'IndexToDirect' ) { if ( 'NormalIndex' in NormalNode ) { indexBuffer = NormalNode.NormalIndex.a; } else if ( 'NormalsIndex' in NormalNode ) { indexBuffer = NormalNode.NormalsIndex.a; } } return { dataSize: 3, buffer: buffer, indices: indexBuffer, mappingType: mappingType, referenceType: referenceType }; } // Parse UVs from FBXTree.Objects.Geometry.LayerElementUV if it exists parseUVs( UVNode ) { const mappingType = UVNode.MappingInformationType; const referenceType = UVNode.ReferenceInformationType; const buffer = UVNode.UV.a; let indexBuffer = []; if ( referenceType === 'IndexToDirect' ) { indexBuffer = UVNode.UVIndex.a; } return { dataSize: 2, buffer: buffer, indices: indexBuffer, mappingType: mappingType, referenceType: referenceType }; } // Parse Vertex Colors from FBXTree.Objects.Geometry.LayerElementColor if it exists parseVertexColors( ColorNode ) { const mappingType = ColorNode.MappingInformationType; const referenceType = ColorNode.ReferenceInformationType; const buffer = ColorNode.Colors.a; let indexBuffer = []; if ( referenceType === 'IndexToDirect' ) { indexBuffer = ColorNode.ColorIndex.a; } for ( let i = 0, c = new Color(); i < buffer.length; i += 4 ) { c.fromArray( buffer, i ).convertSRGBToLinear().toArray( buffer, i ); } return { dataSize: 4, buffer: buffer, indices: indexBuffer, mappingType: mappingType, referenceType: referenceType }; } // Parse mapping and material data in FBXTree.Objects.Geometry.LayerElementMaterial if it exists parseMaterialIndices( MaterialNode ) { const mappingType = MaterialNode.MappingInformationType; const referenceType = MaterialNode.ReferenceInformationType; if ( mappingType === 'NoMappingInformation' ) { return { dataSize: 1, buffer: [ 0 ], indices: [ 0 ], mappingType: 'AllSame', referenceType: referenceType }; } const materialIndexBuffer = MaterialNode.Materials.a; // Since materials are stored as indices, there's a bit of a mismatch between FBX and what // we expect.So we create an intermediate buffer that points to the index in the buffer, // for conforming with the other functions we've written for other data. const materialIndices = []; for ( let i = 0; i < materialIndexBuffer.length; ++ i ) { materialIndices.push( i ); } return { dataSize: 1, buffer: materialIndexBuffer, indices: materialIndices, mappingType: mappingType, referenceType: referenceType }; } // Generate a NurbGeometry from a node in FBXTree.Objects.Geometry parseNurbsGeometry( geoNode ) { const order = parseInt( geoNode.Order ); if ( isNaN( order ) ) { console.error( 'THREE.FBXLoader: Invalid Order %s given for geometry ID: %s', geoNode.Order, geoNode.id ); return new BufferGeometry(); } const degree = order - 1; const knots = geoNode.KnotVector.a; const controlPoints = []; const pointsValues = geoNode.Points.a; for ( let i = 0, l = pointsValues.length; i < l; i += 4 ) { controlPoints.push( new Vector4().fromArray( pointsValues, i ) ); } let startKnot, endKnot; if ( geoNode.Form === 'Closed' ) { controlPoints.push( controlPoints[ 0 ] ); } else if ( geoNode.Form === 'Periodic' ) { startKnot = degree; endKnot = knots.length - 1 - startKnot; for ( let i = 0; i < degree; ++ i ) { controlPoints.push( controlPoints[ i ] ); } } const curve = new NURBSCurve( degree, knots, controlPoints, startKnot, endKnot ); const points = curve.getPoints( controlPoints.length * 12 ); return new BufferGeometry().setFromPoints( points ); } } // parse animation data from FBXTree class AnimationParser { // take raw animation clips and turn them into three.js animation clips parse() { const animationClips = []; const rawClips = this.parseClips(); if ( rawClips !== undefined ) { for ( const key in rawClips ) { const rawClip = rawClips[ key ]; const clip = this.addClip( rawClip ); animationClips.push( clip ); } } return animationClips; } parseClips() { // since the actual transformation data is stored in FBXTree.Objects.AnimationCurve, // if this is undefined we can safely assume there are no animations if ( fbxTree.Objects.AnimationCurve === undefined ) return undefined; const curveNodesMap = this.parseAnimationCurveNodes(); this.parseAnimationCurves( curveNodesMap ); const layersMap = this.parseAnimationLayers( curveNodesMap ); const rawClips = this.parseAnimStacks( layersMap ); return rawClips; } // parse nodes in FBXTree.Objects.AnimationCurveNode // each AnimationCurveNode holds data for an animation transform for a model (e.g. left arm rotation ) // and is referenced by an AnimationLayer parseAnimationCurveNodes() { const rawCurveNodes = fbxTree.Objects.AnimationCurveNode; const curveNodesMap = new Map(); for ( const nodeID in rawCurveNodes ) { const rawCurveNode = rawCurveNodes[ nodeID ]; if ( rawCurveNode.attrName.match( /S|R|T|DeformPercent/ ) !== null ) { const curveNode = { id: rawCurveNode.id, attr: rawCurveNode.attrName, curves: {}, }; curveNodesMap.set( curveNode.id, curveNode ); } } return curveNodesMap; } // parse nodes in FBXTree.Objects.AnimationCurve and connect them up to // previously parsed AnimationCurveNodes. Each AnimationCurve holds data for a single animated // axis ( e.g. times and values of x rotation) parseAnimationCurves( curveNodesMap ) { const rawCurves = fbxTree.Objects.AnimationCurve; // TODO: Many values are identical up to roundoff error, but won't be optimised // e.g. position times: [0, 0.4, 0. 8] // position values: [7.23538335023477e-7, 93.67518615722656, -0.9982695579528809, 7.23538335023477e-7, 93.67518615722656, -0.9982695579528809, 7.235384487103147e-7, 93.67520904541016, -0.9982695579528809] // clearly, this should be optimised to // times: [0], positions [7.23538335023477e-7, 93.67518615722656, -0.9982695579528809] // this shows up in nearly every FBX file, and generally time array is length > 100 for ( const nodeID in rawCurves ) { const animationCurve = { id: rawCurves[ nodeID ].id, times: rawCurves[ nodeID ].KeyTime.a.map( convertFBXTimeToSeconds ), values: rawCurves[ nodeID ].KeyValueFloat.a, }; const relationships = connections.get( animationCurve.id ); if ( relationships !== undefined ) { const animationCurveID = relationships.parents[ 0 ].ID; const animationCurveRelationship = relationships.parents[ 0 ].relationship; if ( animationCurveRelationship.match( /X/ ) ) { curveNodesMap.get( animationCurveID ).curves[ 'x' ] = animationCurve; } else if ( animationCurveRelationship.match( /Y/ ) ) { curveNodesMap.get( animationCurveID ).curves[ 'y' ] = animationCurve; } else if ( animationCurveRelationship.match( /Z/ ) ) { curveNodesMap.get( animationCurveID ).curves[ 'z' ] = animationCurve; } else if ( animationCurveRelationship.match( /DeformPercent/ ) && curveNodesMap.has( animationCurveID ) ) { curveNodesMap.get( animationCurveID ).curves[ 'morph' ] = animationCurve; } } } } // parse nodes in FBXTree.Objects.AnimationLayer. Each layers holds references // to various AnimationCurveNodes and is referenced by an AnimationStack node // note: theoretically a stack can have multiple layers, however in practice there always seems to be one per stack parseAnimationLayers( curveNodesMap ) { const rawLayers = fbxTree.Objects.AnimationLayer; const layersMap = new Map(); for ( const nodeID in rawLayers ) { const layerCurveNodes = []; const connection = connections.get( parseInt( nodeID ) ); if ( connection !== undefined ) { // all the animationCurveNodes used in the layer const children = connection.children; children.forEach( function ( child, i ) { if ( curveNodesMap.has( child.ID ) ) { const curveNode = curveNodesMap.get( child.ID ); // check that the curves are defined for at least one axis, otherwise ignore the curveNode if ( curveNode.curves.x !== undefined || curveNode.curves.y !== undefined || curveNode.curves.z !== undefined ) { if ( layerCurveNodes[ i ] === undefined ) { const modelID = connections.get( child.ID ).parents.filter( function ( parent ) { return parent.relationship !== undefined; } )[ 0 ].ID; if ( modelID !== undefined ) { const rawModel = fbxTree.Objects.Model[ modelID.toString() ]; if ( rawModel === undefined ) { console.warn( 'THREE.FBXLoader: Encountered a unused curve.', child ); return; } const node = { modelName: rawModel.attrName ? PropertyBinding.sanitizeNodeName( rawModel.attrName ) : '', ID: rawModel.id, initialPosition: [ 0, 0, 0 ], initialRotation: [ 0, 0, 0 ], initialScale: [ 1, 1, 1 ], }; sceneGraph.traverse( function ( child ) { if ( child.ID === rawModel.id ) { node.transform = child.matrix; if ( child.userData.transformData ) node.eulerOrder = child.userData.transformData.eulerOrder; } } ); if ( ! node.transform ) node.transform = new Matrix4(); // if the animated model is pre rotated, we'll have to apply the pre rotations to every // animation value as well if ( 'PreRotation' in rawModel ) node.preRotation = rawModel.PreRotation.value; if ( 'PostRotation' in rawModel ) node.postRotation = rawModel.PostRotation.value; layerCurveNodes[ i ] = node; } } if ( layerCurveNodes[ i ] ) layerCurveNodes[ i ][ curveNode.attr ] = curveNode; } else if ( curveNode.curves.morph !== undefined ) { if ( layerCurveNodes[ i ] === undefined ) { const deformerID = connections.get( child.ID ).parents.filter( function ( parent ) { return parent.relationship !== undefined; } )[ 0 ].ID; const morpherID = connections.get( deformerID ).parents[ 0 ].ID; const geoID = connections.get( morpherID ).parents[ 0 ].ID; // assuming geometry is not used in more than one model const modelID = connections.get( geoID ).parents[ 0 ].ID; const rawModel = fbxTree.Objects.Model[ modelID ]; const node = { modelName: rawModel.attrName ? PropertyBinding.sanitizeNodeName( rawModel.attrName ) : '', morphName: fbxTree.Objects.Deformer[ deformerID ].attrName, }; layerCurveNodes[ i ] = node; } layerCurveNodes[ i ][ curveNode.attr ] = curveNode; } } } ); layersMap.set( parseInt( nodeID ), layerCurveNodes ); } } return layersMap; } // parse nodes in FBXTree.Objects.AnimationStack. These are the top level node in the animation // hierarchy. Each Stack node will be used to create a AnimationClip parseAnimStacks( layersMap ) { const rawStacks = fbxTree.Objects.AnimationStack; // connect the stacks (clips) up to the layers const rawClips = {}; for ( const nodeID in rawStacks ) { const children = connections.get( parseInt( nodeID ) ).children; if ( children.length > 1 ) { // it seems like stacks will always be associated with a single layer. But just in case there are files // where there are multiple layers per stack, we'll display a warning console.warn( 'THREE.FBXLoader: Encountered an animation stack with multiple layers, this is currently not supported. Ignoring subsequent layers.' ); } const layer = layersMap.get( children[ 0 ].ID ); rawClips[ nodeID ] = { name: rawStacks[ nodeID ].attrName, layer: layer, }; } return rawClips; } addClip( rawClip ) { let tracks = []; const scope = this; rawClip.layer.forEach( function ( rawTracks ) { tracks = tracks.concat( scope.generateTracks( rawTracks ) ); } ); return new AnimationClip( rawClip.name, - 1, tracks ); } generateTracks( rawTracks ) { const tracks = []; let initialPosition = new Vector3(); let initialScale = new Vector3(); if ( rawTracks.transform ) rawTracks.transform.decompose( initialPosition, new Quaternion(), initialScale ); initialPosition = initialPosition.toArray(); initialScale = initialScale.toArray(); if ( rawTracks.T !== undefined && Object.keys( rawTracks.T.curves ).length > 0 ) { const positionTrack = this.generateVectorTrack( rawTracks.modelName, rawTracks.T.curves, initialPosition, 'position' ); if ( positionTrack !== undefined ) tracks.push( positionTrack ); } if ( rawTracks.R !== undefined && Object.keys( rawTracks.R.curves ).length > 0 ) { const rotationTrack = this.generateRotationTrack( rawTracks.modelName, rawTracks.R.curves, rawTracks.preRotation, rawTracks.postRotation, rawTracks.eulerOrder ); if ( rotationTrack !== undefined ) tracks.push( rotationTrack ); } if ( rawTracks.S !== undefined && Object.keys( rawTracks.S.curves ).length > 0 ) { const scaleTrack = this.generateVectorTrack( rawTracks.modelName, rawTracks.S.curves, initialScale, 'scale' ); if ( scaleTrack !== undefined ) tracks.push( scaleTrack ); } if ( rawTracks.DeformPercent !== undefined ) { const morphTrack = this.generateMorphTrack( rawTracks ); if ( morphTrack !== undefined ) tracks.push( morphTrack ); } return tracks; } generateVectorTrack( modelName, curves, initialValue, type ) { const times = this.getTimesForAllAxes( curves ); const values = this.getKeyframeTrackValues( times, curves, initialValue ); return new VectorKeyframeTrack( modelName + '.' + type, times, values ); } generateRotationTrack( modelName, curves, preRotation, postRotation, eulerOrder ) { let times; let values; if ( curves.x !== undefined && curves.y !== undefined && curves.z !== undefined ) { const result = this.interpolateRotations( curves.x, curves.y, curves.z, eulerOrder ); times = result[ 0 ]; values = result[ 1 ]; } if ( preRotation !== undefined ) { preRotation = preRotation.map( MathUtils.degToRad ); preRotation.push( eulerOrder ); preRotation = new Euler().fromArray( preRotation ); preRotation = new Quaternion().setFromEuler( preRotation ); } if ( postRotation !== undefined ) { postRotation = postRotation.map( MathUtils.degToRad ); postRotation.push( eulerOrder ); postRotation = new Euler().fromArray( postRotation ); postRotation = new Quaternion().setFromEuler( postRotation ).invert(); } const quaternion = new Quaternion(); const euler = new Euler(); const quaternionValues = []; if ( ! values || ! times ) return new QuaternionKeyframeTrack( modelName + '.quaternion', [ 0 ], [ 0 ] ); for ( let i = 0; i < values.length; i += 3 ) { euler.set( values[ i ], values[ i + 1 ], values[ i + 2 ], eulerOrder ); quaternion.setFromEuler( euler ); if ( preRotation !== undefined ) quaternion.premultiply( preRotation ); if ( postRotation !== undefined ) quaternion.multiply( postRotation ); // Check unroll if ( i > 2 ) { const prevQuat = new Quaternion().fromArray( quaternionValues, ( ( i - 3 ) / 3 ) * 4 ); if ( prevQuat.dot( quaternion ) < 0 ) { quaternion.set( - quaternion.x, - quaternion.y, - quaternion.z, - quaternion.w ); } } quaternion.toArray( quaternionValues, ( i / 3 ) * 4 ); } return new QuaternionKeyframeTrack( modelName + '.quaternion', times, quaternionValues ); } generateMorphTrack( rawTracks ) { const curves = rawTracks.DeformPercent.curves.morph; const values = curves.values.map( function ( val ) { return val / 100; } ); const morphNum = sceneGraph.getObjectByName( rawTracks.modelName ).morphTargetDictionary[ rawTracks.morphName ]; return new NumberKeyframeTrack( rawTracks.modelName + '.morphTargetInfluences[' + morphNum + ']', curves.times, values ); } // For all animated objects, times are defined separately for each axis // Here we'll combine the times into one sorted array without duplicates getTimesForAllAxes( curves ) { let times = []; // first join together the times for each axis, if defined if ( curves.x !== undefined ) times = times.concat( curves.x.times ); if ( curves.y !== undefined ) times = times.concat( curves.y.times ); if ( curves.z !== undefined ) times = times.concat( curves.z.times ); // then sort them times = times.sort( function ( a, b ) { return a - b; } ); // and remove duplicates if ( times.length > 1 ) { let targetIndex = 1; let lastValue = times[ 0 ]; for ( let i = 1; i < times.length; i ++ ) { const currentValue = times[ i ]; if ( currentValue !== lastValue ) { times[ targetIndex ] = currentValue; lastValue = currentValue; targetIndex ++; } } times = times.slice( 0, targetIndex ); } return times; } getKeyframeTrackValues( times, curves, initialValue ) { const prevValue = initialValue; const values = []; let xIndex = - 1; let yIndex = - 1; let zIndex = - 1; times.forEach( function ( time ) { if ( curves.x ) xIndex = curves.x.times.indexOf( time ); if ( curves.y ) yIndex = curves.y.times.indexOf( time ); if ( curves.z ) zIndex = curves.z.times.indexOf( time ); // if there is an x value defined for this frame, use that if ( xIndex !== - 1 ) { const xValue = curves.x.values[ xIndex ]; values.push( xValue ); prevValue[ 0 ] = xValue; } else { // otherwise use the x value from the previous frame values.push( prevValue[ 0 ] ); } if ( yIndex !== - 1 ) { const yValue = curves.y.values[ yIndex ]; values.push( yValue ); prevValue[ 1 ] = yValue; } else { values.push( prevValue[ 1 ] ); } if ( zIndex !== - 1 ) { const zValue = curves.z.values[ zIndex ]; values.push( zValue ); prevValue[ 2 ] = zValue; } else { values.push( prevValue[ 2 ] ); } } ); return values; } // Rotations are defined as Euler angles which can have values of any size // These will be converted to quaternions which don't support values greater than // PI, so we'll interpolate large rotations interpolateRotations( curvex, curvey, curvez, eulerOrder ) { const times = []; const values = []; // Add first frame times.push( curvex.times[ 0 ] ); values.push( MathUtils.degToRad( curvex.values[ 0 ] ) ); values.push( MathUtils.degToRad( curvey.values[ 0 ] ) ); values.push( MathUtils.degToRad( curvez.values[ 0 ] ) ); for ( let i = 1; i < curvex.values.length; i ++ ) { const initialValue = [ curvex.values[ i - 1 ], curvey.values[ i - 1 ], curvez.values[ i - 1 ], ]; if ( isNaN( initialValue[ 0 ] ) || isNaN( initialValue[ 1 ] ) || isNaN( initialValue[ 2 ] ) ) { continue; } const initialValueRad = initialValue.map( MathUtils.degToRad ); const currentValue = [ curvex.values[ i ], curvey.values[ i ], curvez.values[ i ], ]; if ( isNaN( currentValue[ 0 ] ) || isNaN( currentValue[ 1 ] ) || isNaN( currentValue[ 2 ] ) ) { continue; } const currentValueRad = currentValue.map( MathUtils.degToRad ); const valuesSpan = [ currentValue[ 0 ] - initialValue[ 0 ], currentValue[ 1 ] - initialValue[ 1 ], currentValue[ 2 ] - initialValue[ 2 ], ]; const absoluteSpan = [ Math.abs( valuesSpan[ 0 ] ), Math.abs( valuesSpan[ 1 ] ), Math.abs( valuesSpan[ 2 ] ), ]; if ( absoluteSpan[ 0 ] >= 180 || absoluteSpan[ 1 ] >= 180 || absoluteSpan[ 2 ] >= 180 ) { const maxAbsSpan = Math.max( ...absoluteSpan ); const numSubIntervals = maxAbsSpan / 180; const E1 = new Euler( ...initialValueRad, eulerOrder ); const E2 = new Euler( ...currentValueRad, eulerOrder ); const Q1 = new Quaternion().setFromEuler( E1 ); const Q2 = new Quaternion().setFromEuler( E2 ); // Check unroll if ( Q1.dot( Q2 ) ) { Q2.set( - Q2.x, - Q2.y, - Q2.z, - Q2.w ); } // Interpolate const initialTime = curvex.times[ i - 1 ]; const timeSpan = curvex.times[ i ] - initialTime; const Q = new Quaternion(); const E = new Euler(); for ( let t = 0; t < 1; t += 1 / numSubIntervals ) { Q.copy( Q1.clone().slerp( Q2.clone(), t ) ); times.push( initialTime + t * timeSpan ); E.setFromQuaternion( Q, eulerOrder ); values.push( E.x ); values.push( E.y ); values.push( E.z ); } } else { times.push( curvex.times[ i ] ); values.push( MathUtils.degToRad( curvex.values[ i ] ) ); values.push( MathUtils.degToRad( curvey.values[ i ] ) ); values.push( MathUtils.degToRad( curvez.values[ i ] ) ); } } return [ times, values ]; } } // parse an FBX file in ASCII format class TextParser { getPrevNode() { return this.nodeStack[ this.currentIndent - 2 ]; } getCurrentNode() { return this.nodeStack[ this.currentIndent - 1 ]; } getCurrentProp() { return this.currentProp; } pushStack( node ) { this.nodeStack.push( node ); this.currentIndent += 1; } popStack() { this.nodeStack.pop(); this.currentIndent -= 1; } setCurrentProp( val, name ) { this.currentProp = val; this.currentPropName = name; } parse( text ) { this.currentIndent = 0; this.allNodes = new FBXTree(); this.nodeStack = []; this.currentProp = []; this.currentPropName = ''; const scope = this; const split = text.split( /[\r\n]+/ ); split.forEach( function ( line, i ) { const matchComment = line.match( /^[\s\t]*;/ ); const matchEmpty = line.match( /^[\s\t]*$/ ); if ( matchComment || matchEmpty ) return; const matchBeginning = line.match( '^\\t{' + scope.currentIndent + '}(\\w+):(.*){', '' ); const matchProperty = line.match( '^\\t{' + ( scope.currentIndent ) + '}(\\w+):[\\s\\t\\r\\n](.*)' ); const matchEnd = line.match( '^\\t{' + ( scope.currentIndent - 1 ) + '}}' ); if ( matchBeginning ) { scope.parseNodeBegin( line, matchBeginning ); } else if ( matchProperty ) { scope.parseNodeProperty( line, matchProperty, split[ ++ i ] ); } else if ( matchEnd ) { scope.popStack(); } else if ( line.match( /^[^\s\t}]/ ) ) { // large arrays are split over multiple lines terminated with a ',' character // if this is encountered the line needs to be joined to the previous line scope.parseNodePropertyContinued( line ); } } ); return this.allNodes; } parseNodeBegin( line, property ) { const nodeName = property[ 1 ].trim().replace( /^"/, '' ).replace( /"$/, '' ); const nodeAttrs = property[ 2 ].split( ',' ).map( function ( attr ) { return attr.trim().replace( /^"/, '' ).replace( /"$/, '' ); } ); const node = { name: nodeName }; const attrs = this.parseNodeAttr( nodeAttrs ); const currentNode = this.getCurrentNode(); // a top node if ( this.currentIndent === 0 ) { this.allNodes.add( nodeName, node ); } else { // a subnode // if the subnode already exists, append it if ( nodeName in currentNode ) { // special case Pose needs PoseNodes as an array if ( nodeName === 'PoseNode' ) { currentNode.PoseNode.push( node ); } else if ( currentNode[ nodeName ].id !== undefined ) { currentNode[ nodeName ] = {}; currentNode[ nodeName ][ currentNode[ nodeName ].id ] = currentNode[ nodeName ]; } if ( attrs.id !== '' ) currentNode[ nodeName ][ attrs.id ] = node; } else if ( typeof attrs.id === 'number' ) { currentNode[ nodeName ] = {}; currentNode[ nodeName ][ attrs.id ] = node; } else if ( nodeName !== 'Properties70' ) { if ( nodeName === 'PoseNode' ) currentNode[ nodeName ] = [ node ]; else currentNode[ nodeName ] = node; } } if ( typeof attrs.id === 'number' ) node.id = attrs.id; if ( attrs.name !== '' ) node.attrName = attrs.name; if ( attrs.type !== '' ) node.attrType = attrs.type; this.pushStack( node ); } parseNodeAttr( attrs ) { let id = attrs[ 0 ]; if ( attrs[ 0 ] !== '' ) { id = parseInt( attrs[ 0 ] ); if ( isNaN( id ) ) { id = attrs[ 0 ]; } } let name = '', type = ''; if ( attrs.length > 1 ) { name = attrs[ 1 ].replace( /^(\w+)::/, '' ); type = attrs[ 2 ]; } return { id: id, name: name, type: type }; } parseNodeProperty( line, property, contentLine ) { let propName = property[ 1 ].replace( /^"/, '' ).replace( /"$/, '' ).trim(); let propValue = property[ 2 ].replace( /^"/, '' ).replace( /"$/, '' ).trim(); // for special case: base64 image data follows "Content: ," line // Content: , // "/9j/4RDaRXhpZgAATU0A..." if ( propName === 'Content' && propValue === ',' ) { propValue = contentLine.replace( /"/g, '' ).replace( /,$/, '' ).trim(); } const currentNode = this.getCurrentNode(); const parentName = currentNode.name; if ( parentName === 'Properties70' ) { this.parseNodeSpecialProperty( line, propName, propValue ); return; } // Connections if ( propName === 'C' ) { const connProps = propValue.split( ',' ).slice( 1 ); const from = parseInt( connProps[ 0 ] ); const to = parseInt( connProps[ 1 ] ); let rest = propValue.split( ',' ).slice( 3 ); rest = rest.map( function ( elem ) { return elem.trim().replace( /^"/, '' ); } ); propName = 'connections'; propValue = [ from, to ]; append( propValue, rest ); if ( currentNode[ propName ] === undefined ) { currentNode[ propName ] = []; } } // Node if ( propName === 'Node' ) currentNode.id = propValue; // connections if ( propName in currentNode && Array.isArray( currentNode[ propName ] ) ) { currentNode[ propName ].push( propValue ); } else { if ( propName !== 'a' ) currentNode[ propName ] = propValue; else currentNode.a = propValue; } this.setCurrentProp( currentNode, propName ); // convert string to array, unless it ends in ',' in which case more will be added to it if ( propName === 'a' && propValue.slice( - 1 ) !== ',' ) { currentNode.a = parseNumberArray( propValue ); } } parseNodePropertyContinued( line ) { const currentNode = this.getCurrentNode(); currentNode.a += line; // if the line doesn't end in ',' we have reached the end of the property value // so convert the string to an array if ( line.slice( - 1 ) !== ',' ) { currentNode.a = parseNumberArray( currentNode.a ); } } // parse "Property70" parseNodeSpecialProperty( line, propName, propValue ) { // split this // P: "Lcl Scaling", "Lcl Scaling", "", "A",1,1,1 // into array like below // ["Lcl Scaling", "Lcl Scaling", "", "A", "1,1,1" ] const props = propValue.split( '",' ).map( function ( prop ) { return prop.trim().replace( /^\"/, '' ).replace( /\s/, '_' ); } ); const innerPropName = props[ 0 ]; const innerPropType1 = props[ 1 ]; const innerPropType2 = props[ 2 ]; const innerPropFlag = props[ 3 ]; let innerPropValue = props[ 4 ]; // cast values where needed, otherwise leave as strings switch ( innerPropType1 ) { case 'int': case 'enum': case 'bool': case 'ULongLong': case 'double': case 'Number': case 'FieldOfView': innerPropValue = parseFloat( innerPropValue ); break; case 'Color': case 'ColorRGB': case 'Vector3D': case 'Lcl_Translation': case 'Lcl_Rotation': case 'Lcl_Scaling': innerPropValue = parseNumberArray( innerPropValue ); break; } // CAUTION: these props must append to parent's parent this.getPrevNode()[ innerPropName ] = { 'type': innerPropType1, 'type2': innerPropType2, 'flag': innerPropFlag, 'value': innerPropValue }; this.setCurrentProp( this.getPrevNode(), innerPropName ); } } // Parse an FBX file in Binary format class BinaryParser { parse( buffer ) { const reader = new BinaryReader( buffer ); reader.skip( 23 ); // skip magic 23 bytes const version = reader.getUint32(); if ( version < 6400 ) { throw new Error( 'THREE.FBXLoader: FBX version not supported, FileVersion: ' + version ); } const allNodes = new FBXTree(); while ( ! this.endOfContent( reader ) ) { const node = this.parseNode( reader, version ); if ( node !== null ) allNodes.add( node.name, node ); } return allNodes; } // Check if reader has reached the end of content. endOfContent( reader ) { // footer size: 160bytes + 16-byte alignment padding // - 16bytes: magic // - padding til 16-byte alignment (at least 1byte?) // (seems like some exporters embed fixed 15 or 16bytes?) // - 4bytes: magic // - 4bytes: version // - 120bytes: zero // - 16bytes: magic if ( reader.size() % 16 === 0 ) { return ( ( reader.getOffset() + 160 + 16 ) & ~ 0xf ) >= reader.size(); } else { return reader.getOffset() + 160 + 16 >= reader.size(); } } // recursively parse nodes until the end of the file is reached parseNode( reader, version ) { const node = {}; // The first three data sizes depends on version. const endOffset = ( version >= 7500 ) ? reader.getUint64() : reader.getUint32(); const numProperties = ( version >= 7500 ) ? reader.getUint64() : reader.getUint32(); ( version >= 7500 ) ? reader.getUint64() : reader.getUint32(); // the returned propertyListLen is not used const nameLen = reader.getUint8(); const name = reader.getString( nameLen ); // Regards this node as NULL-record if endOffset is zero if ( endOffset === 0 ) return null; const propertyList = []; for ( let i = 0; i < numProperties; i ++ ) { propertyList.push( this.parseProperty( reader ) ); } // Regards the first three elements in propertyList as id, attrName, and attrType const id = propertyList.length > 0 ? propertyList[ 0 ] : ''; const attrName = propertyList.length > 1 ? propertyList[ 1 ] : ''; const attrType = propertyList.length > 2 ? propertyList[ 2 ] : ''; // check if this node represents just a single property // like (name, 0) set or (name2, [0, 1, 2]) set of {name: 0, name2: [0, 1, 2]} node.singleProperty = ( numProperties === 1 && reader.getOffset() === endOffset ) ? true : false; while ( endOffset > reader.getOffset() ) { const subNode = this.parseNode( reader, version ); if ( subNode !== null ) this.parseSubNode( name, node, subNode ); } node.propertyList = propertyList; // raw property list used by parent if ( typeof id === 'number' ) node.id = id; if ( attrName !== '' ) node.attrName = attrName; if ( attrType !== '' ) node.attrType = attrType; if ( name !== '' ) node.name = name; return node; } parseSubNode( name, node, subNode ) { // special case: child node is single property if ( subNode.singleProperty === true ) { const value = subNode.propertyList[ 0 ]; if ( Array.isArray( value ) ) { node[ subNode.name ] = subNode; subNode.a = value; } else { node[ subNode.name ] = value; } } else if ( name === 'Connections' && subNode.name === 'C' ) { const array = []; subNode.propertyList.forEach( function ( property, i ) { // first Connection is FBX type (OO, OP, etc.). We'll discard these if ( i !== 0 ) array.push( property ); } ); if ( node.connections === undefined ) { node.connections = []; } node.connections.push( array ); } else if ( subNode.name === 'Properties70' ) { const keys = Object.keys( subNode ); keys.forEach( function ( key ) { node[ key ] = subNode[ key ]; } ); } else if ( name === 'Properties70' && subNode.name === 'P' ) { let innerPropName = subNode.propertyList[ 0 ]; let innerPropType1 = subNode.propertyList[ 1 ]; const innerPropType2 = subNode.propertyList[ 2 ]; const innerPropFlag = subNode.propertyList[ 3 ]; let innerPropValue; if ( innerPropName.indexOf( 'Lcl ' ) === 0 ) innerPropName = innerPropName.replace( 'Lcl ', 'Lcl_' ); if ( innerPropType1.indexOf( 'Lcl ' ) === 0 ) innerPropType1 = innerPropType1.replace( 'Lcl ', 'Lcl_' ); if ( innerPropType1 === 'Color' || innerPropType1 === 'ColorRGB' || innerPropType1 === 'Vector' || innerPropType1 === 'Vector3D' || innerPropType1.indexOf( 'Lcl_' ) === 0 ) { innerPropValue = [ subNode.propertyList[ 4 ], subNode.propertyList[ 5 ], subNode.propertyList[ 6 ] ]; } else { innerPropValue = subNode.propertyList[ 4 ]; } // this will be copied to parent, see above node[ innerPropName ] = { 'type': innerPropType1, 'type2': innerPropType2, 'flag': innerPropFlag, 'value': innerPropValue }; } else if ( node[ subNode.name ] === undefined ) { if ( typeof subNode.id === 'number' ) { node[ subNode.name ] = {}; node[ subNode.name ][ subNode.id ] = subNode; } else { node[ subNode.name ] = subNode; } } else { if ( subNode.name === 'PoseNode' ) { if ( ! Array.isArray( node[ subNode.name ] ) ) { node[ subNode.name ] = [ node[ subNode.name ] ]; } node[ subNode.name ].push( subNode ); } else if ( node[ subNode.name ][ subNode.id ] === undefined ) { node[ subNode.name ][ subNode.id ] = subNode; } } } parseProperty( reader ) { const type = reader.getString( 1 ); let length; switch ( type ) { case 'C': return reader.getBoolean(); case 'D': return reader.getFloat64(); case 'F': return reader.getFloat32(); case 'I': return reader.getInt32(); case 'L': return reader.getInt64(); case 'R': length = reader.getUint32(); return reader.getArrayBuffer( length ); case 'S': length = reader.getUint32(); return reader.getString( length ); case 'Y': return reader.getInt16(); case 'b': case 'c': case 'd': case 'f': case 'i': case 'l': const arrayLength = reader.getUint32(); const encoding = reader.getUint32(); // 0: non-compressed, 1: compressed const compressedLength = reader.getUint32(); if ( encoding === 0 ) { switch ( type ) { case 'b': case 'c': return reader.getBooleanArray( arrayLength ); case 'd': return reader.getFloat64Array( arrayLength ); case 'f': return reader.getFloat32Array( arrayLength ); case 'i': return reader.getInt32Array( arrayLength ); case 'l': return reader.getInt64Array( arrayLength ); } } const data = fflate.unzlibSync( new Uint8Array( reader.getArrayBuffer( compressedLength ) ) ); const reader2 = new BinaryReader( data.buffer ); switch ( type ) { case 'b': case 'c': return reader2.getBooleanArray( arrayLength ); case 'd': return reader2.getFloat64Array( arrayLength ); case 'f': return reader2.getFloat32Array( arrayLength ); case 'i': return reader2.getInt32Array( arrayLength ); case 'l': return reader2.getInt64Array( arrayLength ); } break; // cannot happen but is required by the DeepScan default: throw new Error( 'THREE.FBXLoader: Unknown property type ' + type ); } } } class BinaryReader { constructor( buffer, littleEndian ) { this.dv = new DataView( buffer ); this.offset = 0; this.littleEndian = ( littleEndian !== undefined ) ? littleEndian : true; this._textDecoder = new TextDecoder(); } getOffset() { return this.offset; } size() { return this.dv.buffer.byteLength; } skip( length ) { this.offset += length; } // seems like true/false representation depends on exporter. // true: 1 or 'Y'(=0x59), false: 0 or 'T'(=0x54) // then sees LSB. getBoolean() { return ( this.getUint8() & 1 ) === 1; } getBooleanArray( size ) { const a = []; for ( let i = 0; i < size; i ++ ) { a.push( this.getBoolean() ); } return a; } getUint8() { const value = this.dv.getUint8( this.offset ); this.offset += 1; return value; } getInt16() { const value = this.dv.getInt16( this.offset, this.littleEndian ); this.offset += 2; return value; } getInt32() { const value = this.dv.getInt32( this.offset, this.littleEndian ); this.offset += 4; return value; } getInt32Array( size ) { const a = []; for ( let i = 0; i < size; i ++ ) { a.push( this.getInt32() ); } return a; } getUint32() { const value = this.dv.getUint32( this.offset, this.littleEndian ); this.offset += 4; return value; } // JavaScript doesn't support 64-bit integer so calculate this here // 1 << 32 will return 1 so using multiply operation instead here. // There's a possibility that this method returns wrong value if the value // is out of the range between Number.MAX_SAFE_INTEGER and Number.MIN_SAFE_INTEGER. // TODO: safely handle 64-bit integer getInt64() { let low, high; if ( this.littleEndian ) { low = this.getUint32(); high = this.getUint32(); } else { high = this.getUint32(); low = this.getUint32(); } // calculate negative value if ( high & 0x80000000 ) { high = ~ high & 0xFFFFFFFF; low = ~ low & 0xFFFFFFFF; if ( low === 0xFFFFFFFF ) high = ( high + 1 ) & 0xFFFFFFFF; low = ( low + 1 ) & 0xFFFFFFFF; return - ( high * 0x100000000 + low ); } return high * 0x100000000 + low; } getInt64Array( size ) { const a = []; for ( let i = 0; i < size; i ++ ) { a.push( this.getInt64() ); } return a; } // Note: see getInt64() comment getUint64() { let low, high; if ( this.littleEndian ) { low = this.getUint32(); high = this.getUint32(); } else { high = this.getUint32(); low = this.getUint32(); } return high * 0x100000000 + low; } getFloat32() { const value = this.dv.getFloat32( this.offset, this.littleEndian ); this.offset += 4; return value; } getFloat32Array( size ) { const a = []; for ( let i = 0; i < size; i ++ ) { a.push( this.getFloat32() ); } return a; } getFloat64() { const value = this.dv.getFloat64( this.offset, this.littleEndian ); this.offset += 8; return value; } getFloat64Array( size ) { const a = []; for ( let i = 0; i < size; i ++ ) { a.push( this.getFloat64() ); } return a; } getArrayBuffer( size ) { const value = this.dv.buffer.slice( this.offset, this.offset + size ); this.offset += size; return value; } getString( size ) { const start = this.offset; let a = new Uint8Array( this.dv.buffer, start, size ); this.skip( size ); const nullByte = a.indexOf( 0 ); if ( nullByte >= 0 ) a = new Uint8Array( this.dv.buffer, start, nullByte ); return this._textDecoder.decode( a ); } } // FBXTree holds a representation of the FBX data, returned by the TextParser ( FBX ASCII format) // and BinaryParser( FBX Binary format) class FBXTree { add( key, val ) { this[ key ] = val; } } // ************** UTILITY FUNCTIONS ************** function isFbxFormatBinary( buffer ) { const CORRECT = 'Kaydara\u0020FBX\u0020Binary\u0020\u0020\0'; return buffer.byteLength >= CORRECT.length && CORRECT === convertArrayBufferToString( buffer, 0, CORRECT.length ); } function isFbxFormatASCII( text ) { const CORRECT = [ 'K', 'a', 'y', 'd', 'a', 'r', 'a', '\\', 'F', 'B', 'X', '\\', 'B', 'i', 'n', 'a', 'r', 'y', '\\', '\\' ]; let cursor = 0; function read( offset ) { const result = text[ offset - 1 ]; text = text.slice( cursor + offset ); cursor ++; return result; } for ( let i = 0; i < CORRECT.length; ++ i ) { const num = read( 1 ); if ( num === CORRECT[ i ] ) { return false; } } return true; } function getFbxVersion( text ) { const versionRegExp = /FBXVersion: (\d+)/; const match = text.match( versionRegExp ); if ( match ) { const version = parseInt( match[ 1 ] ); return version; } throw new Error( 'THREE.FBXLoader: Cannot find the version number for the file given.' ); } // Converts FBX ticks into real time seconds. function convertFBXTimeToSeconds( time ) { return time / 46186158000; } const dataArray = []; // extracts the data from the correct position in the FBX array based on indexing type function getData( polygonVertexIndex, polygonIndex, vertexIndex, infoObject ) { let index; switch ( infoObject.mappingType ) { case 'ByPolygonVertex' : index = polygonVertexIndex; break; case 'ByPolygon' : index = polygonIndex; break; case 'ByVertice' : index = vertexIndex; break; case 'AllSame' : index = infoObject.indices[ 0 ]; break; default : console.warn( 'THREE.FBXLoader: unknown attribute mapping type ' + infoObject.mappingType ); } if ( infoObject.referenceType === 'IndexToDirect' ) index = infoObject.indices[ index ]; const from = index * infoObject.dataSize; const to = from + infoObject.dataSize; return slice( dataArray, infoObject.buffer, from, to ); } const tempEuler = new Euler(); const tempVec = new Vector3(); // generate transformation from FBX transform data // ref: https://help.autodesk.com/view/FBX/2017/ENU/?guid=__files_GUID_10CDD63C_79C1_4F2D_BB28_AD2BE65A02ED_htm // ref: http://docs.autodesk.com/FBX/2014/ENU/FBX-SDK-Documentation/index.html?url=cpp_ref/_transformations_2main_8cxx-example.html,topicNumber=cpp_ref__transformations_2main_8cxx_example_htmlfc10a1e1-b18d-4e72-9dc0-70d0f1959f5e function generateTransform( transformData ) { const lTranslationM = new Matrix4(); const lPreRotationM = new Matrix4(); const lRotationM = new Matrix4(); const lPostRotationM = new Matrix4(); const lScalingM = new Matrix4(); const lScalingPivotM = new Matrix4(); const lScalingOffsetM = new Matrix4(); const lRotationOffsetM = new Matrix4(); const lRotationPivotM = new Matrix4(); const lParentGX = new Matrix4(); const lParentLX = new Matrix4(); const lGlobalT = new Matrix4(); const inheritType = ( transformData.inheritType ) ? transformData.inheritType : 0; if ( transformData.translation ) lTranslationM.setPosition( tempVec.fromArray( transformData.translation ) ); if ( transformData.preRotation ) { const array = transformData.preRotation.map( MathUtils.degToRad ); array.push( transformData.eulerOrder || Euler.DEFAULT_ORDER ); lPreRotationM.makeRotationFromEuler( tempEuler.fromArray( array ) ); } if ( transformData.rotation ) { const array = transformData.rotation.map( MathUtils.degToRad ); array.push( transformData.eulerOrder || Euler.DEFAULT_ORDER ); lRotationM.makeRotationFromEuler( tempEuler.fromArray( array ) ); } if ( transformData.postRotation ) { const array = transformData.postRotation.map( MathUtils.degToRad ); array.push( transformData.eulerOrder || Euler.DEFAULT_ORDER ); lPostRotationM.makeRotationFromEuler( tempEuler.fromArray( array ) ); lPostRotationM.invert(); } if ( transformData.scale ) lScalingM.scale( tempVec.fromArray( transformData.scale ) ); // Pivots and offsets if ( transformData.scalingOffset ) lScalingOffsetM.setPosition( tempVec.fromArray( transformData.scalingOffset ) ); if ( transformData.scalingPivot ) lScalingPivotM.setPosition( tempVec.fromArray( transformData.scalingPivot ) ); if ( transformData.rotationOffset ) lRotationOffsetM.setPosition( tempVec.fromArray( transformData.rotationOffset ) ); if ( transformData.rotationPivot ) lRotationPivotM.setPosition( tempVec.fromArray( transformData.rotationPivot ) ); // parent transform if ( transformData.parentMatrixWorld ) { lParentLX.copy( transformData.parentMatrix ); lParentGX.copy( transformData.parentMatrixWorld ); } const lLRM = lPreRotationM.clone().multiply( lRotationM ).multiply( lPostRotationM ); // Global Rotation const lParentGRM = new Matrix4(); lParentGRM.extractRotation( lParentGX ); // Global Shear*Scaling const lParentTM = new Matrix4(); lParentTM.copyPosition( lParentGX ); const lParentGRSM = lParentTM.clone().invert().multiply( lParentGX ); const lParentGSM = lParentGRM.clone().invert().multiply( lParentGRSM ); const lLSM = lScalingM; const lGlobalRS = new Matrix4(); if ( inheritType === 0 ) { lGlobalRS.copy( lParentGRM ).multiply( lLRM ).multiply( lParentGSM ).multiply( lLSM ); } else if ( inheritType === 1 ) { lGlobalRS.copy( lParentGRM ).multiply( lParentGSM ).multiply( lLRM ).multiply( lLSM ); } else { const lParentLSM = new Matrix4().scale( new Vector3().setFromMatrixScale( lParentLX ) ); const lParentLSM_inv = lParentLSM.clone().invert(); const lParentGSM_noLocal = lParentGSM.clone().multiply( lParentLSM_inv ); lGlobalRS.copy( lParentGRM ).multiply( lLRM ).multiply( lParentGSM_noLocal ).multiply( lLSM ); } const lRotationPivotM_inv = lRotationPivotM.clone().invert(); const lScalingPivotM_inv = lScalingPivotM.clone().invert(); // Calculate the local transform matrix let lTransform = lTranslationM.clone().multiply( lRotationOffsetM ).multiply( lRotationPivotM ).multiply( lPreRotationM ).multiply( lRotationM ).multiply( lPostRotationM ).multiply( lRotationPivotM_inv ).multiply( lScalingOffsetM ).multiply( lScalingPivotM ).multiply( lScalingM ).multiply( lScalingPivotM_inv ); const lLocalTWithAllPivotAndOffsetInfo = new Matrix4().copyPosition( lTransform ); const lGlobalTranslation = lParentGX.clone().multiply( lLocalTWithAllPivotAndOffsetInfo ); lGlobalT.copyPosition( lGlobalTranslation ); lTransform = lGlobalT.clone().multiply( lGlobalRS ); // from global to local lTransform.premultiply( lParentGX.invert() ); return lTransform; } // Returns the three.js intrinsic Euler order corresponding to FBX extrinsic Euler order // ref: http://help.autodesk.com/view/FBX/2017/ENU/?guid=__cpp_ref_class_fbx_euler_html function getEulerOrder( order ) { order = order || 0; const enums = [ 'ZYX', // -> XYZ extrinsic 'YZX', // -> XZY extrinsic 'XZY', // -> YZX extrinsic 'ZXY', // -> YXZ extrinsic 'YXZ', // -> ZXY extrinsic 'XYZ', // -> ZYX extrinsic //'SphericXYZ', // not possible to support ]; if ( order === 6 ) { console.warn( 'THREE.FBXLoader: unsupported Euler Order: Spherical XYZ. Animations and rotations may be incorrect.' ); return enums[ 0 ]; } return enums[ order ]; } // Parses comma separated list of numbers and returns them an array. // Used internally by the TextParser function parseNumberArray( value ) { const array = value.split( ',' ).map( function ( val ) { return parseFloat( val ); } ); return array; } function convertArrayBufferToString( buffer, from, to ) { if ( from === undefined ) from = 0; if ( to === undefined ) to = buffer.byteLength; return new TextDecoder().decode( new Uint8Array( buffer, from, to ) ); } function append( a, b ) { for ( let i = 0, j = a.length, l = b.length; i < l; i ++, j ++ ) { a[ j ] = b[ i ]; } } function slice( a, b, from, to ) { for ( let i = from, j = 0; i < to; i ++, j ++ ) { a[ j ] = b[ i ]; } return a; } export { FBXLoader };