/** * RGB Halftone shader for three.js. * NOTE: * Shape (1 = Dot, 2 = Ellipse, 3 = Line, 4 = Square) * Blending Mode (1 = Linear, 2 = Multiply, 3 = Add, 4 = Lighter, 5 = Darker) */ const HalftoneShader = { name: 'HalftoneShader', uniforms: { 'tDiffuse': { value: null }, 'shape': { value: 1 }, 'radius': { value: 4 }, 'rotateR': { value: Math.PI / 12 * 1 }, 'rotateG': { value: Math.PI / 12 * 2 }, 'rotateB': { value: Math.PI / 12 * 3 }, 'scatter': { value: 0 }, 'width': { value: 1 }, 'height': { value: 1 }, 'blending': { value: 1 }, 'blendingMode': { value: 1 }, 'greyscale': { value: false }, 'disable': { value: false } }, vertexShader: /* glsl */` varying vec2 vUV; void main() { vUV = uv; gl_Position = projectionMatrix * modelViewMatrix * vec4(position, 1.0); }`, fragmentShader: /* glsl */` #define SQRT2_MINUS_ONE 0.41421356 #define SQRT2_HALF_MINUS_ONE 0.20710678 #define PI2 6.28318531 #define SHAPE_DOT 1 #define SHAPE_ELLIPSE 2 #define SHAPE_LINE 3 #define SHAPE_SQUARE 4 #define BLENDING_LINEAR 1 #define BLENDING_MULTIPLY 2 #define BLENDING_ADD 3 #define BLENDING_LIGHTER 4 #define BLENDING_DARKER 5 uniform sampler2D tDiffuse; uniform float radius; uniform float rotateR; uniform float rotateG; uniform float rotateB; uniform float scatter; uniform float width; uniform float height; uniform int shape; uniform bool disable; uniform float blending; uniform int blendingMode; varying vec2 vUV; uniform bool greyscale; const int samples = 8; float blend( float a, float b, float t ) { // linear blend return a * ( 1.0 - t ) + b * t; } float hypot( float x, float y ) { // vector magnitude return sqrt( x * x + y * y ); } float rand( vec2 seed ){ // get pseudo-random number return fract( sin( dot( seed.xy, vec2( 12.9898, 78.233 ) ) ) * 43758.5453 ); } float distanceToDotRadius( float channel, vec2 coord, vec2 normal, vec2 p, float angle, float rad_max ) { // apply shape-specific transforms float dist = hypot( coord.x - p.x, coord.y - p.y ); float rad = channel; if ( shape == SHAPE_DOT ) { rad = pow( abs( rad ), 1.125 ) * rad_max; } else if ( shape == SHAPE_ELLIPSE ) { rad = pow( abs( rad ), 1.125 ) * rad_max; if ( dist != 0.0 ) { float dot_p = abs( ( p.x - coord.x ) / dist * normal.x + ( p.y - coord.y ) / dist * normal.y ); dist = ( dist * ( 1.0 - SQRT2_HALF_MINUS_ONE ) ) + dot_p * dist * SQRT2_MINUS_ONE; } } else if ( shape == SHAPE_LINE ) { rad = pow( abs( rad ), 1.5) * rad_max; float dot_p = ( p.x - coord.x ) * normal.x + ( p.y - coord.y ) * normal.y; dist = hypot( normal.x * dot_p, normal.y * dot_p ); } else if ( shape == SHAPE_SQUARE ) { float theta = atan( p.y - coord.y, p.x - coord.x ) - angle; float sin_t = abs( sin( theta ) ); float cos_t = abs( cos( theta ) ); rad = pow( abs( rad ), 1.4 ); rad = rad_max * ( rad + ( ( sin_t > cos_t ) ? rad - sin_t * rad : rad - cos_t * rad ) ); } return rad - dist; } struct Cell { // grid sample positions vec2 normal; vec2 p1; vec2 p2; vec2 p3; vec2 p4; float samp2; float samp1; float samp3; float samp4; }; vec4 getSample( vec2 point ) { // multi-sampled point vec4 tex = texture2D( tDiffuse, vec2( point.x / width, point.y / height ) ); float base = rand( vec2( floor( point.x ), floor( point.y ) ) ) * PI2; float step = PI2 / float( samples ); float dist = radius * 0.66; for ( int i = 0; i < samples; ++i ) { float r = base + step * float( i ); vec2 coord = point + vec2( cos( r ) * dist, sin( r ) * dist ); tex += texture2D( tDiffuse, vec2( coord.x / width, coord.y / height ) ); } tex /= float( samples ) + 1.0; return tex; } float getDotColour( Cell c, vec2 p, int channel, float angle, float aa ) { // get colour for given point float dist_c_1, dist_c_2, dist_c_3, dist_c_4, res; if ( channel == 0 ) { c.samp1 = getSample( c.p1 ).r; c.samp2 = getSample( c.p2 ).r; c.samp3 = getSample( c.p3 ).r; c.samp4 = getSample( c.p4 ).r; } else if (channel == 1) { c.samp1 = getSample( c.p1 ).g; c.samp2 = getSample( c.p2 ).g; c.samp3 = getSample( c.p3 ).g; c.samp4 = getSample( c.p4 ).g; } else { c.samp1 = getSample( c.p1 ).b; c.samp3 = getSample( c.p3 ).b; c.samp2 = getSample( c.p2 ).b; c.samp4 = getSample( c.p4 ).b; } dist_c_1 = distanceToDotRadius( c.samp1, c.p1, c.normal, p, angle, radius ); dist_c_2 = distanceToDotRadius( c.samp2, c.p2, c.normal, p, angle, radius ); dist_c_3 = distanceToDotRadius( c.samp3, c.p3, c.normal, p, angle, radius ); dist_c_4 = distanceToDotRadius( c.samp4, c.p4, c.normal, p, angle, radius ); res = ( dist_c_1 > 0.0 ) ? clamp( dist_c_1 / aa, 0.0, 1.0 ) : 0.0; res += ( dist_c_2 > 0.0 ) ? clamp( dist_c_2 / aa, 0.0, 1.0 ) : 0.0; res += ( dist_c_3 > 0.0 ) ? clamp( dist_c_3 / aa, 0.0, 1.0 ) : 0.0; res += ( dist_c_4 > 0.0 ) ? clamp( dist_c_4 / aa, 0.0, 1.0 ) : 0.0; res = clamp( res, 0.0, 1.0 ); return res; } Cell getReferenceCell( vec2 p, vec2 origin, float grid_angle, float step ) { // get containing cell Cell c; // calc grid vec2 n = vec2( cos( grid_angle ), sin( grid_angle ) ); float threshold = step * 0.5; float dot_normal = n.x * ( p.x - origin.x ) + n.y * ( p.y - origin.y ); float dot_line = -n.y * ( p.x - origin.x ) + n.x * ( p.y - origin.y ); vec2 offset = vec2( n.x * dot_normal, n.y * dot_normal ); float offset_normal = mod( hypot( offset.x, offset.y ), step ); float normal_dir = ( dot_normal < 0.0 ) ? 1.0 : -1.0; float normal_scale = ( ( offset_normal < threshold ) ? -offset_normal : step - offset_normal ) * normal_dir; float offset_line = mod( hypot( ( p.x - offset.x ) - origin.x, ( p.y - offset.y ) - origin.y ), step ); float line_dir = ( dot_line < 0.0 ) ? 1.0 : -1.0; float line_scale = ( ( offset_line < threshold ) ? -offset_line : step - offset_line ) * line_dir; // get closest corner c.normal = n; c.p1.x = p.x - n.x * normal_scale + n.y * line_scale; c.p1.y = p.y - n.y * normal_scale - n.x * line_scale; // scatter if ( scatter != 0.0 ) { float off_mag = scatter * threshold * 0.5; float off_angle = rand( vec2( floor( c.p1.x ), floor( c.p1.y ) ) ) * PI2; c.p1.x += cos( off_angle ) * off_mag; c.p1.y += sin( off_angle ) * off_mag; } // find corners float normal_step = normal_dir * ( ( offset_normal < threshold ) ? step : -step ); float line_step = line_dir * ( ( offset_line < threshold ) ? step : -step ); c.p2.x = c.p1.x - n.x * normal_step; c.p2.y = c.p1.y - n.y * normal_step; c.p3.x = c.p1.x + n.y * line_step; c.p3.y = c.p1.y - n.x * line_step; c.p4.x = c.p1.x - n.x * normal_step + n.y * line_step; c.p4.y = c.p1.y - n.y * normal_step - n.x * line_step; return c; } float blendColour( float a, float b, float t ) { // blend colours if ( blendingMode == BLENDING_LINEAR ) { return blend( a, b, 1.0 - t ); } else if ( blendingMode == BLENDING_ADD ) { return blend( a, min( 1.0, a + b ), t ); } else if ( blendingMode == BLENDING_MULTIPLY ) { return blend( a, max( 0.0, a * b ), t ); } else if ( blendingMode == BLENDING_LIGHTER ) { return blend( a, max( a, b ), t ); } else if ( blendingMode == BLENDING_DARKER ) { return blend( a, min( a, b ), t ); } else { return blend( a, b, 1.0 - t ); } } void main() { if ( ! disable ) { // setup vec2 p = vec2( vUV.x * width, vUV.y * height ); vec2 origin = vec2( 0, 0 ); float aa = ( radius < 2.5 ) ? radius * 0.5 : 1.25; // get channel samples Cell cell_r = getReferenceCell( p, origin, rotateR, radius ); Cell cell_g = getReferenceCell( p, origin, rotateG, radius ); Cell cell_b = getReferenceCell( p, origin, rotateB, radius ); float r = getDotColour( cell_r, p, 0, rotateR, aa ); float g = getDotColour( cell_g, p, 1, rotateG, aa ); float b = getDotColour( cell_b, p, 2, rotateB, aa ); // blend with original vec4 colour = texture2D( tDiffuse, vUV ); r = blendColour( r, colour.r, blending ); g = blendColour( g, colour.g, blending ); b = blendColour( b, colour.b, blending ); if ( greyscale ) { r = g = b = (r + b + g) / 3.0; } gl_FragColor = vec4( r, g, b, 1.0 ); } else { gl_FragColor = texture2D( tDiffuse, vUV ); } }` }; export { HalftoneShader };