import { Matrix3, Vector3, Color } from 'three'; /** * https://github.com/gkjohnson/ply-exporter-js * * Usage: * const exporter = new PLYExporter(); * * // second argument is a list of options * exporter.parse(mesh, data => console.log(data), { binary: true, excludeAttributes: [ 'color' ], littleEndian: true }); * * Format Definition: * http://paulbourke.net/dataformats/ply/ */ class PLYExporter { parse( object, onDone, options = {} ) { // Iterate over the valid meshes in the object function traverseMeshes( cb ) { object.traverse( function ( child ) { if ( child.isMesh === true || child.isPoints ) { const mesh = child; const geometry = mesh.geometry; if ( geometry.hasAttribute( 'position' ) === true ) { cb( mesh, geometry ); } } } ); } // Default options const defaultOptions = { binary: false, excludeAttributes: [], // normal, uv, color, index littleEndian: false }; options = Object.assign( defaultOptions, options ); const excludeAttributes = options.excludeAttributes; let includeIndices = true; let includeNormals = false; let includeColors = false; let includeUVs = false; // count the vertices, check which properties are used, // and cache the BufferGeometry let vertexCount = 0; let faceCount = 0; object.traverse( function ( child ) { if ( child.isMesh === true ) { const mesh = child; const geometry = mesh.geometry; const vertices = geometry.getAttribute( 'position' ); const normals = geometry.getAttribute( 'normal' ); const uvs = geometry.getAttribute( 'uv' ); const colors = geometry.getAttribute( 'color' ); const indices = geometry.getIndex(); if ( vertices === undefined ) { return; } vertexCount += vertices.count; faceCount += indices ? indices.count / 3 : vertices.count / 3; if ( normals !== undefined ) includeNormals = true; if ( uvs !== undefined ) includeUVs = true; if ( colors !== undefined ) includeColors = true; } else if ( child.isPoints ) { const mesh = child; const geometry = mesh.geometry; const vertices = geometry.getAttribute( 'position' ); const normals = geometry.getAttribute( 'normal' ); const colors = geometry.getAttribute( 'color' ); vertexCount += vertices.count; if ( normals !== undefined ) includeNormals = true; if ( colors !== undefined ) includeColors = true; includeIndices = false; } } ); const tempColor = new Color(); includeIndices = includeIndices && excludeAttributes.indexOf( 'index' ) === - 1; includeNormals = includeNormals && excludeAttributes.indexOf( 'normal' ) === - 1; includeColors = includeColors && excludeAttributes.indexOf( 'color' ) === - 1; includeUVs = includeUVs && excludeAttributes.indexOf( 'uv' ) === - 1; if ( includeIndices && faceCount !== Math.floor( faceCount ) ) { // point cloud meshes will not have an index array and may not have a // number of vertices that is divisble by 3 (and therefore representable // as triangles) console.error( 'PLYExporter: Failed to generate a valid PLY file with triangle indices because the ' + 'number of indices is not divisible by 3.' ); return null; } const indexByteCount = 4; let header = 'ply\n' + `format ${ options.binary ? ( options.littleEndian ? 'binary_little_endian' : 'binary_big_endian' ) : 'ascii' } 1.0\n` + `element vertex ${vertexCount}\n` + // position 'property float x\n' + 'property float y\n' + 'property float z\n'; if ( includeNormals === true ) { // normal header += 'property float nx\n' + 'property float ny\n' + 'property float nz\n'; } if ( includeUVs === true ) { // uvs header += 'property float s\n' + 'property float t\n'; } if ( includeColors === true ) { // colors header += 'property uchar red\n' + 'property uchar green\n' + 'property uchar blue\n'; } if ( includeIndices === true ) { // faces header += `element face ${faceCount}\n` + 'property list uchar int vertex_index\n'; } header += 'end_header\n'; // Generate attribute data const vertex = new Vector3(); const normalMatrixWorld = new Matrix3(); let result = null; if ( options.binary === true ) { // Binary File Generation const headerBin = new TextEncoder().encode( header ); // 3 position values at 4 bytes // 3 normal values at 4 bytes // 3 color channels with 1 byte // 2 uv values at 4 bytes const vertexListLength = vertexCount * ( 4 * 3 + ( includeNormals ? 4 * 3 : 0 ) + ( includeColors ? 3 : 0 ) + ( includeUVs ? 4 * 2 : 0 ) ); // 1 byte shape desciptor // 3 vertex indices at ${indexByteCount} bytes const faceListLength = includeIndices ? faceCount * ( indexByteCount * 3 + 1 ) : 0; const output = new DataView( new ArrayBuffer( headerBin.length + vertexListLength + faceListLength ) ); new Uint8Array( output.buffer ).set( headerBin, 0 ); let vOffset = headerBin.length; let fOffset = headerBin.length + vertexListLength; let writtenVertices = 0; traverseMeshes( function ( mesh, geometry ) { const vertices = geometry.getAttribute( 'position' ); const normals = geometry.getAttribute( 'normal' ); const uvs = geometry.getAttribute( 'uv' ); const colors = geometry.getAttribute( 'color' ); const indices = geometry.getIndex(); normalMatrixWorld.getNormalMatrix( mesh.matrixWorld ); for ( let i = 0, l = vertices.count; i < l; i ++ ) { vertex.fromBufferAttribute( vertices, i ); vertex.applyMatrix4( mesh.matrixWorld ); // Position information output.setFloat32( vOffset, vertex.x, options.littleEndian ); vOffset += 4; output.setFloat32( vOffset, vertex.y, options.littleEndian ); vOffset += 4; output.setFloat32( vOffset, vertex.z, options.littleEndian ); vOffset += 4; // Normal information if ( includeNormals === true ) { if ( normals != null ) { vertex.fromBufferAttribute( normals, i ); vertex.applyMatrix3( normalMatrixWorld ).normalize(); output.setFloat32( vOffset, vertex.x, options.littleEndian ); vOffset += 4; output.setFloat32( vOffset, vertex.y, options.littleEndian ); vOffset += 4; output.setFloat32( vOffset, vertex.z, options.littleEndian ); vOffset += 4; } else { output.setFloat32( vOffset, 0, options.littleEndian ); vOffset += 4; output.setFloat32( vOffset, 0, options.littleEndian ); vOffset += 4; output.setFloat32( vOffset, 0, options.littleEndian ); vOffset += 4; } } // UV information if ( includeUVs === true ) { if ( uvs != null ) { output.setFloat32( vOffset, uvs.getX( i ), options.littleEndian ); vOffset += 4; output.setFloat32( vOffset, uvs.getY( i ), options.littleEndian ); vOffset += 4; } else { output.setFloat32( vOffset, 0, options.littleEndian ); vOffset += 4; output.setFloat32( vOffset, 0, options.littleEndian ); vOffset += 4; } } // Color information if ( includeColors === true ) { if ( colors != null ) { tempColor .fromBufferAttribute( colors, i ) .convertLinearToSRGB(); output.setUint8( vOffset, Math.floor( tempColor.r * 255 ) ); vOffset += 1; output.setUint8( vOffset, Math.floor( tempColor.g * 255 ) ); vOffset += 1; output.setUint8( vOffset, Math.floor( tempColor.b * 255 ) ); vOffset += 1; } else { output.setUint8( vOffset, 255 ); vOffset += 1; output.setUint8( vOffset, 255 ); vOffset += 1; output.setUint8( vOffset, 255 ); vOffset += 1; } } } if ( includeIndices === true ) { // Create the face list if ( indices !== null ) { for ( let i = 0, l = indices.count; i < l; i += 3 ) { output.setUint8( fOffset, 3 ); fOffset += 1; output.setUint32( fOffset, indices.getX( i + 0 ) + writtenVertices, options.littleEndian ); fOffset += indexByteCount; output.setUint32( fOffset, indices.getX( i + 1 ) + writtenVertices, options.littleEndian ); fOffset += indexByteCount; output.setUint32( fOffset, indices.getX( i + 2 ) + writtenVertices, options.littleEndian ); fOffset += indexByteCount; } } else { for ( let i = 0, l = vertices.count; i < l; i += 3 ) { output.setUint8( fOffset, 3 ); fOffset += 1; output.setUint32( fOffset, writtenVertices + i, options.littleEndian ); fOffset += indexByteCount; output.setUint32( fOffset, writtenVertices + i + 1, options.littleEndian ); fOffset += indexByteCount; output.setUint32( fOffset, writtenVertices + i + 2, options.littleEndian ); fOffset += indexByteCount; } } } // Save the amount of verts we've already written so we can offset // the face index on the next mesh writtenVertices += vertices.count; } ); result = output.buffer; } else { // Ascii File Generation // count the number of vertices let writtenVertices = 0; let vertexList = ''; let faceList = ''; traverseMeshes( function ( mesh, geometry ) { const vertices = geometry.getAttribute( 'position' ); const normals = geometry.getAttribute( 'normal' ); const uvs = geometry.getAttribute( 'uv' ); const colors = geometry.getAttribute( 'color' ); const indices = geometry.getIndex(); normalMatrixWorld.getNormalMatrix( mesh.matrixWorld ); // form each line for ( let i = 0, l = vertices.count; i < l; i ++ ) { vertex.fromBufferAttribute( vertices, i ); vertex.applyMatrix4( mesh.matrixWorld ); // Position information let line = vertex.x + ' ' + vertex.y + ' ' + vertex.z; // Normal information if ( includeNormals === true ) { if ( normals != null ) { vertex.fromBufferAttribute( normals, i ); vertex.applyMatrix3( normalMatrixWorld ).normalize(); line += ' ' + vertex.x + ' ' + vertex.y + ' ' + vertex.z; } else { line += ' 0 0 0'; } } // UV information if ( includeUVs === true ) { if ( uvs != null ) { line += ' ' + uvs.getX( i ) + ' ' + uvs.getY( i ); } else { line += ' 0 0'; } } // Color information if ( includeColors === true ) { if ( colors != null ) { tempColor .fromBufferAttribute( colors, i ) .convertLinearToSRGB(); line += ' ' + Math.floor( tempColor.r * 255 ) + ' ' + Math.floor( tempColor.g * 255 ) + ' ' + Math.floor( tempColor.b * 255 ); } else { line += ' 255 255 255'; } } vertexList += line + '\n'; } // Create the face list if ( includeIndices === true ) { if ( indices !== null ) { for ( let i = 0, l = indices.count; i < l; i += 3 ) { faceList += `3 ${ indices.getX( i + 0 ) + writtenVertices }`; faceList += ` ${ indices.getX( i + 1 ) + writtenVertices }`; faceList += ` ${ indices.getX( i + 2 ) + writtenVertices }\n`; } } else { for ( let i = 0, l = vertices.count; i < l; i += 3 ) { faceList += `3 ${ writtenVertices + i } ${ writtenVertices + i + 1 } ${ writtenVertices + i + 2 }\n`; } } faceCount += indices ? indices.count / 3 : vertices.count / 3; } writtenVertices += vertices.count; } ); result = `${ header }${vertexList}${ includeIndices ? `${faceList}\n` : '\n' }`; } if ( typeof onDone === 'function' ) requestAnimationFrame( () => onDone( result ) ); return result; } } export { PLYExporter };