node-ejs-renderer/node_modules/regenerator-transform/lib/emit.js

904 lines
37 KiB
JavaScript
Raw Normal View History

2024-06-09 13:55:01 -04:00
"use strict";
var _interopRequireDefault = require("@babel/runtime/helpers/interopRequireDefault");
var _assert = _interopRequireDefault(require("assert"));
var leap = _interopRequireWildcard(require("./leap"));
var meta = _interopRequireWildcard(require("./meta"));
var util = _interopRequireWildcard(require("./util"));
function _getRequireWildcardCache(nodeInterop) { if (typeof WeakMap !== "function") return null; var cacheBabelInterop = new WeakMap(); var cacheNodeInterop = new WeakMap(); return (_getRequireWildcardCache = function _getRequireWildcardCache(nodeInterop) { return nodeInterop ? cacheNodeInterop : cacheBabelInterop; })(nodeInterop); }
function _interopRequireWildcard(obj, nodeInterop) { if (!nodeInterop && obj && obj.__esModule) { return obj; } if (obj === null || typeof obj !== "object" && typeof obj !== "function") { return { "default": obj }; } var cache = _getRequireWildcardCache(nodeInterop); if (cache && cache.has(obj)) { return cache.get(obj); } var newObj = {}; var hasPropertyDescriptor = Object.defineProperty && Object.getOwnPropertyDescriptor; for (var key in obj) { if (key !== "default" && Object.prototype.hasOwnProperty.call(obj, key)) { var desc = hasPropertyDescriptor ? Object.getOwnPropertyDescriptor(obj, key) : null; if (desc && (desc.get || desc.set)) { Object.defineProperty(newObj, key, desc); } else { newObj[key] = obj[key]; } } } newObj["default"] = obj; if (cache) { cache.set(obj, newObj); } return newObj; }
/**
* Copyright (c) 2014-present, Facebook, Inc.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*/
var hasOwn = Object.prototype.hasOwnProperty;
function Emitter(contextId) {
_assert["default"].ok(this instanceof Emitter);
util.getTypes().assertIdentifier(contextId);
// Used to generate unique temporary names.
this.nextTempId = 0;
// In order to make sure the context object does not collide with
// anything in the local scope, we might have to rename it, so we
// refer to it symbolically instead of just assuming that it will be
// called "context".
this.contextId = contextId;
// An append-only list of Statements that grows each time this.emit is
// called.
this.listing = [];
// A sparse array whose keys correspond to locations in this.listing
// that have been marked as branch/jump targets.
this.marked = [true];
this.insertedLocs = new Set();
// The last location will be marked when this.getDispatchLoop is
// called.
this.finalLoc = this.loc();
// A list of all leap.TryEntry statements emitted.
this.tryEntries = [];
// Each time we evaluate the body of a loop, we tell this.leapManager
// to enter a nested loop context that determines the meaning of break
// and continue statements therein.
this.leapManager = new leap.LeapManager(this);
}
var Ep = Emitter.prototype;
exports.Emitter = Emitter;
// Offsets into this.listing that could be used as targets for branches or
// jumps are represented as numeric Literal nodes. This representation has
// the amazingly convenient benefit of allowing the exact value of the
// location to be determined at any time, even after generating code that
// refers to the location.
// We use 'Number.MAX_VALUE' to mark uninitialized location. We can safely do
// so because no code can realistically have about 1.8e+308 locations before
// hitting memory limit of the machine it's running on. For comparison, the
// estimated number of atoms in the observable universe is around 1e+80.
var PENDING_LOCATION = Number.MAX_VALUE;
Ep.loc = function () {
var l = util.getTypes().numericLiteral(PENDING_LOCATION);
this.insertedLocs.add(l);
return l;
};
Ep.getInsertedLocs = function () {
return this.insertedLocs;
};
Ep.getContextId = function () {
return util.getTypes().clone(this.contextId);
};
// Sets the exact value of the given location to the offset of the next
// Statement emitted.
Ep.mark = function (loc) {
util.getTypes().assertLiteral(loc);
var index = this.listing.length;
if (loc.value === PENDING_LOCATION) {
loc.value = index;
} else {
// Locations can be marked redundantly, but their values cannot change
// once set the first time.
_assert["default"].strictEqual(loc.value, index);
}
this.marked[index] = true;
return loc;
};
Ep.emit = function (node) {
var t = util.getTypes();
if (t.isExpression(node)) {
node = t.expressionStatement(node);
}
t.assertStatement(node);
this.listing.push(node);
};
// Shorthand for emitting assignment statements. This will come in handy
// for assignments to temporary variables.
Ep.emitAssign = function (lhs, rhs) {
this.emit(this.assign(lhs, rhs));
return lhs;
};
// Shorthand for an assignment statement.
Ep.assign = function (lhs, rhs) {
var t = util.getTypes();
return t.expressionStatement(t.assignmentExpression("=", t.cloneDeep(lhs), rhs));
};
// Convenience function for generating expressions like context.next,
// context.sent, and context.rval.
Ep.contextProperty = function (name, computed) {
var t = util.getTypes();
return t.memberExpression(this.getContextId(), computed ? t.stringLiteral(name) : t.identifier(name), !!computed);
};
// Shorthand for setting context.rval and jumping to `context.stop()`.
Ep.stop = function (rval) {
if (rval) {
this.setReturnValue(rval);
}
this.jump(this.finalLoc);
};
Ep.setReturnValue = function (valuePath) {
util.getTypes().assertExpression(valuePath.value);
this.emitAssign(this.contextProperty("rval"), this.explodeExpression(valuePath));
};
Ep.clearPendingException = function (tryLoc, assignee) {
var t = util.getTypes();
t.assertLiteral(tryLoc);
var catchCall = t.callExpression(this.contextProperty("catch", true), [t.clone(tryLoc)]);
if (assignee) {
this.emitAssign(assignee, catchCall);
} else {
this.emit(catchCall);
}
};
// Emits code for an unconditional jump to the given location, even if the
// exact value of the location is not yet known.
Ep.jump = function (toLoc) {
this.emitAssign(this.contextProperty("next"), toLoc);
this.emit(util.getTypes().breakStatement());
};
// Conditional jump.
Ep.jumpIf = function (test, toLoc) {
var t = util.getTypes();
t.assertExpression(test);
t.assertLiteral(toLoc);
this.emit(t.ifStatement(test, t.blockStatement([this.assign(this.contextProperty("next"), toLoc), t.breakStatement()])));
};
// Conditional jump, with the condition negated.
Ep.jumpIfNot = function (test, toLoc) {
var t = util.getTypes();
t.assertExpression(test);
t.assertLiteral(toLoc);
var negatedTest;
if (t.isUnaryExpression(test) && test.operator === "!") {
// Avoid double negation.
negatedTest = test.argument;
} else {
negatedTest = t.unaryExpression("!", test);
}
this.emit(t.ifStatement(negatedTest, t.blockStatement([this.assign(this.contextProperty("next"), toLoc), t.breakStatement()])));
};
// Returns a unique MemberExpression that can be used to store and
// retrieve temporary values. Since the object of the member expression is
// the context object, which is presumed to coexist peacefully with all
// other local variables, and since we just increment `nextTempId`
// monotonically, uniqueness is assured.
Ep.makeTempVar = function () {
return this.contextProperty("t" + this.nextTempId++);
};
Ep.getContextFunction = function (id) {
var t = util.getTypes();
return t.functionExpression(id || null /*Anonymous*/, [this.getContextId()], t.blockStatement([this.getDispatchLoop()]), false,
// Not a generator anymore!
false // Nor an expression.
);
};
// Turns this.listing into a loop of the form
//
// while (1) switch (context.next) {
// case 0:
// ...
// case n:
// return context.stop();
// }
//
// Each marked location in this.listing will correspond to one generated
// case statement.
Ep.getDispatchLoop = function () {
var self = this;
var t = util.getTypes();
var cases = [];
var current;
// If we encounter a break, continue, or return statement in a switch
// case, we can skip the rest of the statements until the next case.
var alreadyEnded = false;
self.listing.forEach(function (stmt, i) {
if (self.marked.hasOwnProperty(i)) {
cases.push(t.switchCase(t.numericLiteral(i), current = []));
alreadyEnded = false;
}
if (!alreadyEnded) {
current.push(stmt);
if (t.isCompletionStatement(stmt)) alreadyEnded = true;
}
});
// Now that we know how many statements there will be in this.listing,
// we can finally resolve this.finalLoc.value.
this.finalLoc.value = this.listing.length;
cases.push(t.switchCase(this.finalLoc, [
// Intentionally fall through to the "end" case...
]),
// So that the runtime can jump to the final location without having
// to know its offset, we provide the "end" case as a synonym.
t.switchCase(t.stringLiteral("end"), [
// This will check/clear both context.thrown and context.rval.
t.returnStatement(t.callExpression(this.contextProperty("stop"), []))]));
return t.whileStatement(t.numericLiteral(1), t.switchStatement(t.assignmentExpression("=", this.contextProperty("prev"), this.contextProperty("next")), cases));
};
Ep.getTryLocsList = function () {
if (this.tryEntries.length === 0) {
// To avoid adding a needless [] to the majority of runtime.wrap
// argument lists, force the caller to handle this case specially.
return null;
}
var t = util.getTypes();
var lastLocValue = 0;
return t.arrayExpression(this.tryEntries.map(function (tryEntry) {
var thisLocValue = tryEntry.firstLoc.value;
_assert["default"].ok(thisLocValue >= lastLocValue, "try entries out of order");
lastLocValue = thisLocValue;
var ce = tryEntry.catchEntry;
var fe = tryEntry.finallyEntry;
var locs = [tryEntry.firstLoc,
// The null here makes a hole in the array.
ce ? ce.firstLoc : null];
if (fe) {
locs[2] = fe.firstLoc;
locs[3] = fe.afterLoc;
}
return t.arrayExpression(locs.map(function (loc) {
return loc && t.clone(loc);
}));
}));
};
// All side effects must be realized in order.
// If any subexpression harbors a leap, all subexpressions must be
// neutered of side effects.
// No destructive modification of AST nodes.
Ep.explode = function (path, ignoreResult) {
var t = util.getTypes();
var node = path.node;
var self = this;
t.assertNode(node);
if (t.isDeclaration(node)) throw getDeclError(node);
if (t.isStatement(node)) return self.explodeStatement(path);
if (t.isExpression(node)) return self.explodeExpression(path, ignoreResult);
switch (node.type) {
case "Program":
return path.get("body").map(self.explodeStatement, self);
case "VariableDeclarator":
throw getDeclError(node);
// These node types should be handled by their parent nodes
// (ObjectExpression, SwitchStatement, and TryStatement, respectively).
case "Property":
case "SwitchCase":
case "CatchClause":
throw new Error(node.type + " nodes should be handled by their parents");
default:
throw new Error("unknown Node of type " + JSON.stringify(node.type));
}
};
function getDeclError(node) {
return new Error("all declarations should have been transformed into " + "assignments before the Exploder began its work: " + JSON.stringify(node));
}
Ep.explodeStatement = function (path, labelId) {
var t = util.getTypes();
var stmt = path.node;
var self = this;
var before, after, head;
t.assertStatement(stmt);
if (labelId) {
t.assertIdentifier(labelId);
} else {
labelId = null;
}
// Explode BlockStatement nodes even if they do not contain a yield,
// because we don't want or need the curly braces.
if (t.isBlockStatement(stmt)) {
path.get("body").forEach(function (path) {
self.explodeStatement(path);
});
return;
}
if (!meta.containsLeap(stmt)) {
// Technically we should be able to avoid emitting the statement
// altogether if !meta.hasSideEffects(stmt), but that leads to
// confusing generated code (for instance, `while (true) {}` just
// disappears) and is probably a more appropriate job for a dedicated
// dead code elimination pass.
self.emit(stmt);
return;
}
switch (stmt.type) {
case "ExpressionStatement":
self.explodeExpression(path.get("expression"), true);
break;
case "LabeledStatement":
after = this.loc();
// Did you know you can break from any labeled block statement or
// control structure? Well, you can! Note: when a labeled loop is
// encountered, the leap.LabeledEntry created here will immediately
// enclose a leap.LoopEntry on the leap manager's stack, and both
// entries will have the same label. Though this works just fine, it
// may seem a bit redundant. In theory, we could check here to
// determine if stmt knows how to handle its own label; for example,
// stmt happens to be a WhileStatement and so we know it's going to
// establish its own LoopEntry when we explode it (below). Then this
// LabeledEntry would be unnecessary. Alternatively, we might be
// tempted not to pass stmt.label down into self.explodeStatement,
// because we've handled the label here, but that's a mistake because
// labeled loops may contain labeled continue statements, which is not
// something we can handle in this generic case. All in all, I think a
// little redundancy greatly simplifies the logic of this case, since
// it's clear that we handle all possible LabeledStatements correctly
// here, regardless of whether they interact with the leap manager
// themselves. Also remember that labels and break/continue-to-label
// statements are rare, and all of this logic happens at transform
// time, so it has no additional runtime cost.
self.leapManager.withEntry(new leap.LabeledEntry(after, stmt.label), function () {
self.explodeStatement(path.get("body"), stmt.label);
});
self.mark(after);
break;
case "WhileStatement":
before = this.loc();
after = this.loc();
self.mark(before);
self.jumpIfNot(self.explodeExpression(path.get("test")), after);
self.leapManager.withEntry(new leap.LoopEntry(after, before, labelId), function () {
self.explodeStatement(path.get("body"));
});
self.jump(before);
self.mark(after);
break;
case "DoWhileStatement":
var first = this.loc();
var test = this.loc();
after = this.loc();
self.mark(first);
self.leapManager.withEntry(new leap.LoopEntry(after, test, labelId), function () {
self.explode(path.get("body"));
});
self.mark(test);
self.jumpIf(self.explodeExpression(path.get("test")), first);
self.mark(after);
break;
case "ForStatement":
head = this.loc();
var update = this.loc();
after = this.loc();
if (stmt.init) {
// We pass true here to indicate that if stmt.init is an expression
// then we do not care about its result.
self.explode(path.get("init"), true);
}
self.mark(head);
if (stmt.test) {
self.jumpIfNot(self.explodeExpression(path.get("test")), after);
} else {
// No test means continue unconditionally.
}
self.leapManager.withEntry(new leap.LoopEntry(after, update, labelId), function () {
self.explodeStatement(path.get("body"));
});
self.mark(update);
if (stmt.update) {
// We pass true here to indicate that if stmt.update is an
// expression then we do not care about its result.
self.explode(path.get("update"), true);
}
self.jump(head);
self.mark(after);
break;
case "TypeCastExpression":
return self.explodeExpression(path.get("expression"));
case "ForInStatement":
head = this.loc();
after = this.loc();
var keyIterNextFn = self.makeTempVar();
self.emitAssign(keyIterNextFn, t.callExpression(util.runtimeProperty("keys"), [self.explodeExpression(path.get("right"))]));
self.mark(head);
var keyInfoTmpVar = self.makeTempVar();
self.jumpIf(t.memberExpression(t.assignmentExpression("=", keyInfoTmpVar, t.callExpression(t.cloneDeep(keyIterNextFn), [])), t.identifier("done"), false), after);
self.emitAssign(stmt.left, t.memberExpression(t.cloneDeep(keyInfoTmpVar), t.identifier("value"), false));
self.leapManager.withEntry(new leap.LoopEntry(after, head, labelId), function () {
self.explodeStatement(path.get("body"));
});
self.jump(head);
self.mark(after);
break;
case "BreakStatement":
self.emitAbruptCompletion({
type: "break",
target: self.leapManager.getBreakLoc(stmt.label)
});
break;
case "ContinueStatement":
self.emitAbruptCompletion({
type: "continue",
target: self.leapManager.getContinueLoc(stmt.label)
});
break;
case "SwitchStatement":
// Always save the discriminant into a temporary variable in case the
// test expressions overwrite values like context.sent.
var disc = self.emitAssign(self.makeTempVar(), self.explodeExpression(path.get("discriminant")));
after = this.loc();
var defaultLoc = this.loc();
var condition = defaultLoc;
var caseLocs = [];
// If there are no cases, .cases might be undefined.
var cases = stmt.cases || [];
for (var i = cases.length - 1; i >= 0; --i) {
var c = cases[i];
t.assertSwitchCase(c);
if (c.test) {
condition = t.conditionalExpression(t.binaryExpression("===", t.cloneDeep(disc), c.test), caseLocs[i] = this.loc(), condition);
} else {
caseLocs[i] = defaultLoc;
}
}
var discriminant = path.get("discriminant");
util.replaceWithOrRemove(discriminant, condition);
self.jump(self.explodeExpression(discriminant));
self.leapManager.withEntry(new leap.SwitchEntry(after), function () {
path.get("cases").forEach(function (casePath) {
var i = casePath.key;
self.mark(caseLocs[i]);
casePath.get("consequent").forEach(function (path) {
self.explodeStatement(path);
});
});
});
self.mark(after);
if (defaultLoc.value === PENDING_LOCATION) {
self.mark(defaultLoc);
_assert["default"].strictEqual(after.value, defaultLoc.value);
}
break;
case "IfStatement":
var elseLoc = stmt.alternate && this.loc();
after = this.loc();
self.jumpIfNot(self.explodeExpression(path.get("test")), elseLoc || after);
self.explodeStatement(path.get("consequent"));
if (elseLoc) {
self.jump(after);
self.mark(elseLoc);
self.explodeStatement(path.get("alternate"));
}
self.mark(after);
break;
case "ReturnStatement":
self.emitAbruptCompletion({
type: "return",
value: self.explodeExpression(path.get("argument"))
});
break;
case "WithStatement":
throw new Error("WithStatement not supported in generator functions.");
case "TryStatement":
after = this.loc();
var handler = stmt.handler;
var catchLoc = handler && this.loc();
var catchEntry = catchLoc && new leap.CatchEntry(catchLoc, handler.param);
var finallyLoc = stmt.finalizer && this.loc();
var finallyEntry = finallyLoc && new leap.FinallyEntry(finallyLoc, after);
var tryEntry = new leap.TryEntry(self.getUnmarkedCurrentLoc(), catchEntry, finallyEntry);
self.tryEntries.push(tryEntry);
self.updateContextPrevLoc(tryEntry.firstLoc);
self.leapManager.withEntry(tryEntry, function () {
self.explodeStatement(path.get("block"));
if (catchLoc) {
if (finallyLoc) {
// If we have both a catch block and a finally block, then
// because we emit the catch block first, we need to jump over
// it to the finally block.
self.jump(finallyLoc);
} else {
// If there is no finally block, then we need to jump over the
// catch block to the fall-through location.
self.jump(after);
}
self.updateContextPrevLoc(self.mark(catchLoc));
var bodyPath = path.get("handler.body");
var safeParam = self.makeTempVar();
self.clearPendingException(tryEntry.firstLoc, safeParam);
bodyPath.traverse(catchParamVisitor, {
getSafeParam: function getSafeParam() {
return t.cloneDeep(safeParam);
},
catchParamName: handler.param.name
});
self.leapManager.withEntry(catchEntry, function () {
self.explodeStatement(bodyPath);
});
}
if (finallyLoc) {
self.updateContextPrevLoc(self.mark(finallyLoc));
self.leapManager.withEntry(finallyEntry, function () {
self.explodeStatement(path.get("finalizer"));
});
self.emit(t.returnStatement(t.callExpression(self.contextProperty("finish"), [finallyEntry.firstLoc])));
}
});
self.mark(after);
break;
case "ThrowStatement":
self.emit(t.throwStatement(self.explodeExpression(path.get("argument"))));
break;
case "ClassDeclaration":
self.emit(self.explodeClass(path));
break;
default:
throw new Error("unknown Statement of type " + JSON.stringify(stmt.type));
}
};
var catchParamVisitor = {
Identifier: function Identifier(path, state) {
if (path.node.name === state.catchParamName && util.isReference(path)) {
util.replaceWithOrRemove(path, state.getSafeParam());
}
},
Scope: function Scope(path, state) {
if (path.scope.hasOwnBinding(state.catchParamName)) {
// Don't descend into nested scopes that shadow the catch
// parameter with their own declarations.
path.skip();
}
}
};
Ep.emitAbruptCompletion = function (record) {
if (!isValidCompletion(record)) {
_assert["default"].ok(false, "invalid completion record: " + JSON.stringify(record));
}
_assert["default"].notStrictEqual(record.type, "normal", "normal completions are not abrupt");
var t = util.getTypes();
var abruptArgs = [t.stringLiteral(record.type)];
if (record.type === "break" || record.type === "continue") {
t.assertLiteral(record.target);
abruptArgs[1] = this.insertedLocs.has(record.target) ? record.target : t.cloneDeep(record.target);
} else if (record.type === "return" || record.type === "throw") {
if (record.value) {
t.assertExpression(record.value);
abruptArgs[1] = this.insertedLocs.has(record.value) ? record.value : t.cloneDeep(record.value);
}
}
this.emit(t.returnStatement(t.callExpression(this.contextProperty("abrupt"), abruptArgs)));
};
function isValidCompletion(record) {
var type = record.type;
if (type === "normal") {
return !hasOwn.call(record, "target");
}
if (type === "break" || type === "continue") {
return !hasOwn.call(record, "value") && util.getTypes().isLiteral(record.target);
}
if (type === "return" || type === "throw") {
return hasOwn.call(record, "value") && !hasOwn.call(record, "target");
}
return false;
}
// Not all offsets into emitter.listing are potential jump targets. For
// example, execution typically falls into the beginning of a try block
// without jumping directly there. This method returns the current offset
// without marking it, so that a switch case will not necessarily be
// generated for this offset (I say "not necessarily" because the same
// location might end up being marked in the process of emitting other
// statements). There's no logical harm in marking such locations as jump
// targets, but minimizing the number of switch cases keeps the generated
// code shorter.
Ep.getUnmarkedCurrentLoc = function () {
return util.getTypes().numericLiteral(this.listing.length);
};
// The context.prev property takes the value of context.next whenever we
// evaluate the switch statement discriminant, which is generally good
// enough for tracking the last location we jumped to, but sometimes
// context.prev needs to be more precise, such as when we fall
// successfully out of a try block and into a finally block without
// jumping. This method exists to update context.prev to the freshest
// available location. If we were implementing a full interpreter, we
// would know the location of the current instruction with complete
// precision at all times, but we don't have that luxury here, as it would
// be costly and verbose to set context.prev before every statement.
Ep.updateContextPrevLoc = function (loc) {
var t = util.getTypes();
if (loc) {
t.assertLiteral(loc);
if (loc.value === PENDING_LOCATION) {
// If an uninitialized location literal was passed in, set its value
// to the current this.listing.length.
loc.value = this.listing.length;
} else {
// Otherwise assert that the location matches the current offset.
_assert["default"].strictEqual(loc.value, this.listing.length);
}
} else {
loc = this.getUnmarkedCurrentLoc();
}
// Make sure context.prev is up to date in case we fell into this try
// statement without jumping to it. TODO Consider avoiding this
// assignment when we know control must have jumped here.
this.emitAssign(this.contextProperty("prev"), loc);
};
// In order to save the rest of explodeExpression from a combinatorial
// trainwreck of special cases, explodeViaTempVar is responsible for
// deciding when a subexpression needs to be "exploded," which is my
// very technical term for emitting the subexpression as an assignment
// to a temporary variable and the substituting the temporary variable
// for the original subexpression. Think of exploded view diagrams, not
// Michael Bay movies. The point of exploding subexpressions is to
// control the precise order in which the generated code realizes the
// side effects of those subexpressions.
Ep.explodeViaTempVar = function (tempVar, childPath, hasLeapingChildren, ignoreChildResult) {
_assert["default"].ok(!ignoreChildResult || !tempVar, "Ignoring the result of a child expression but forcing it to " + "be assigned to a temporary variable?");
var t = util.getTypes();
var result = this.explodeExpression(childPath, ignoreChildResult);
if (ignoreChildResult) {
// Side effects already emitted above.
} else if (tempVar || hasLeapingChildren && !t.isLiteral(result)) {
// If tempVar was provided, then the result will always be assigned
// to it, even if the result does not otherwise need to be assigned
// to a temporary variable. When no tempVar is provided, we have
// the flexibility to decide whether a temporary variable is really
// necessary. Unfortunately, in general, a temporary variable is
// required whenever any child contains a yield expression, since it
// is difficult to prove (at all, let alone efficiently) whether
// this result would evaluate to the same value before and after the
// yield (see #206). One narrow case where we can prove it doesn't
// matter (and thus we do not need a temporary variable) is when the
// result in question is a Literal value.
result = this.emitAssign(tempVar || this.makeTempVar(), result);
}
return result;
};
Ep.explodeExpression = function (path, ignoreResult) {
var t = util.getTypes();
var expr = path.node;
if (expr) {
t.assertExpression(expr);
} else {
return expr;
}
var self = this;
var result; // Used optionally by several cases below.
var after;
function finish(expr) {
t.assertExpression(expr);
if (ignoreResult) {
self.emit(expr);
}
return expr;
}
// If the expression does not contain a leap, then we either emit the
// expression as a standalone statement or return it whole.
if (!meta.containsLeap(expr)) {
return finish(expr);
}
// If any child contains a leap (such as a yield or labeled continue or
// break statement), then any sibling subexpressions will almost
// certainly have to be exploded in order to maintain the order of their
// side effects relative to the leaping child(ren).
var hasLeapingChildren = meta.containsLeap.onlyChildren(expr);
// If ignoreResult is true, then we must take full responsibility for
// emitting the expression with all its side effects, and we should not
// return a result.
switch (expr.type) {
case "MemberExpression":
return finish(t.memberExpression(self.explodeExpression(path.get("object")), expr.computed ? self.explodeViaTempVar(null, path.get("property"), hasLeapingChildren) : expr.property, expr.computed));
case "CallExpression":
var calleePath = path.get("callee");
var argsPath = path.get("arguments");
var newCallee;
var newArgs;
var hasLeapingArgs = argsPath.some(function (argPath) {
return meta.containsLeap(argPath.node);
});
var injectFirstArg = null;
if (t.isMemberExpression(calleePath.node)) {
if (hasLeapingArgs) {
// If the arguments of the CallExpression contained any yield
// expressions, then we need to be sure to evaluate the callee
// before evaluating the arguments, but if the callee was a member
// expression, then we must be careful that the object of the
// member expression still gets bound to `this` for the call.
var newObject = self.explodeViaTempVar(
// Assign the exploded callee.object expression to a temporary
// variable so that we can use it twice without reevaluating it.
self.makeTempVar(), calleePath.get("object"), hasLeapingChildren);
var newProperty = calleePath.node.computed ? self.explodeViaTempVar(null, calleePath.get("property"), hasLeapingChildren) : calleePath.node.property;
injectFirstArg = newObject;
newCallee = t.memberExpression(t.memberExpression(t.cloneDeep(newObject), newProperty, calleePath.node.computed), t.identifier("call"), false);
} else {
newCallee = self.explodeExpression(calleePath);
}
} else {
newCallee = self.explodeViaTempVar(null, calleePath, hasLeapingChildren);
if (t.isMemberExpression(newCallee)) {
// If the callee was not previously a MemberExpression, then the
// CallExpression was "unqualified," meaning its `this` object
// should be the global object. If the exploded expression has
// become a MemberExpression (e.g. a context property, probably a
// temporary variable), then we need to force it to be unqualified
// by using the (0, object.property)(...) trick; otherwise, it
// will receive the object of the MemberExpression as its `this`
// object.
newCallee = t.sequenceExpression([t.numericLiteral(0), t.cloneDeep(newCallee)]);
}
}
if (hasLeapingArgs) {
newArgs = argsPath.map(function (argPath) {
return self.explodeViaTempVar(null, argPath, hasLeapingChildren);
});
if (injectFirstArg) newArgs.unshift(injectFirstArg);
newArgs = newArgs.map(function (arg) {
return t.cloneDeep(arg);
});
} else {
newArgs = path.node.arguments;
}
return finish(t.callExpression(newCallee, newArgs));
case "NewExpression":
return finish(t.newExpression(self.explodeViaTempVar(null, path.get("callee"), hasLeapingChildren), path.get("arguments").map(function (argPath) {
return self.explodeViaTempVar(null, argPath, hasLeapingChildren);
})));
case "ObjectExpression":
return finish(t.objectExpression(path.get("properties").map(function (propPath) {
if (propPath.isObjectProperty()) {
return t.objectProperty(propPath.node.key, self.explodeViaTempVar(null, propPath.get("value"), hasLeapingChildren), propPath.node.computed);
} else {
return propPath.node;
}
})));
case "ArrayExpression":
return finish(t.arrayExpression(path.get("elements").map(function (elemPath) {
if (!elemPath.node) {
return null;
}
if (elemPath.isSpreadElement()) {
return t.spreadElement(self.explodeViaTempVar(null, elemPath.get("argument"), hasLeapingChildren));
} else {
return self.explodeViaTempVar(null, elemPath, hasLeapingChildren);
}
})));
case "SequenceExpression":
var lastIndex = expr.expressions.length - 1;
path.get("expressions").forEach(function (exprPath) {
if (exprPath.key === lastIndex) {
result = self.explodeExpression(exprPath, ignoreResult);
} else {
self.explodeExpression(exprPath, true);
}
});
return result;
case "LogicalExpression":
after = this.loc();
if (!ignoreResult) {
result = self.makeTempVar();
}
var left = self.explodeViaTempVar(result, path.get("left"), hasLeapingChildren);
if (expr.operator === "&&") {
self.jumpIfNot(left, after);
} else {
_assert["default"].strictEqual(expr.operator, "||");
self.jumpIf(left, after);
}
self.explodeViaTempVar(result, path.get("right"), hasLeapingChildren, ignoreResult);
self.mark(after);
return result;
case "ConditionalExpression":
var elseLoc = this.loc();
after = this.loc();
var test = self.explodeExpression(path.get("test"));
self.jumpIfNot(test, elseLoc);
if (!ignoreResult) {
result = self.makeTempVar();
}
self.explodeViaTempVar(result, path.get("consequent"), hasLeapingChildren, ignoreResult);
self.jump(after);
self.mark(elseLoc);
self.explodeViaTempVar(result, path.get("alternate"), hasLeapingChildren, ignoreResult);
self.mark(after);
return result;
case "UnaryExpression":
return finish(t.unaryExpression(expr.operator,
// Can't (and don't need to) break up the syntax of the argument.
// Think about delete a[b].
self.explodeExpression(path.get("argument")), !!expr.prefix));
case "BinaryExpression":
return finish(t.binaryExpression(expr.operator, self.explodeViaTempVar(null, path.get("left"), hasLeapingChildren), self.explodeViaTempVar(null, path.get("right"), hasLeapingChildren)));
case "AssignmentExpression":
if (expr.operator === "=") {
// If this is a simple assignment, the left hand side does not need
// to be read before the right hand side is evaluated, so we can
// avoid the more complicated logic below.
return finish(t.assignmentExpression(expr.operator, self.explodeExpression(path.get("left")), self.explodeExpression(path.get("right"))));
}
var lhs = self.explodeExpression(path.get("left"));
var temp = self.emitAssign(self.makeTempVar(), lhs);
// For example,
//
// x += yield y
//
// becomes
//
// context.t0 = x
// x = context.t0 += yield y
//
// so that the left-hand side expression is read before the yield.
// Fixes https://github.com/facebook/regenerator/issues/345.
return finish(t.assignmentExpression("=", t.cloneDeep(lhs), t.assignmentExpression(expr.operator, t.cloneDeep(temp), self.explodeExpression(path.get("right")))));
case "UpdateExpression":
return finish(t.updateExpression(expr.operator, self.explodeExpression(path.get("argument")), expr.prefix));
case "YieldExpression":
after = this.loc();
var arg = expr.argument && self.explodeExpression(path.get("argument"));
if (arg && expr.delegate) {
var _result = self.makeTempVar();
var _ret = t.returnStatement(t.callExpression(self.contextProperty("delegateYield"), [arg, t.stringLiteral(_result.property.name), after]));
_ret.loc = expr.loc;
self.emit(_ret);
self.mark(after);
return _result;
}
self.emitAssign(self.contextProperty("next"), after);
var ret = t.returnStatement(t.cloneDeep(arg) || null);
// Preserve the `yield` location so that source mappings for the statements
// link back to the yield properly.
ret.loc = expr.loc;
self.emit(ret);
self.mark(after);
return self.contextProperty("sent");
case "ClassExpression":
return finish(self.explodeClass(path));
default:
throw new Error("unknown Expression of type " + JSON.stringify(expr.type));
}
};
Ep.explodeClass = function (path) {
var explodingChildren = [];
if (path.node.superClass) {
explodingChildren.push(path.get("superClass"));
}
path.get("body.body").forEach(function (member) {
if (member.node.computed) {
explodingChildren.push(member.get("key"));
}
});
var hasLeapingChildren = explodingChildren.some(function (child) {
return meta.containsLeap(child);
});
for (var i = 0; i < explodingChildren.length; i++) {
var child = explodingChildren[i];
var isLast = i === explodingChildren.length - 1;
if (isLast) {
child.replaceWith(this.explodeExpression(child));
} else {
child.replaceWith(this.explodeViaTempVar(null, child, hasLeapingChildren));
}
}
return path.node;
};