node-ejs-renderer/node_modules/three/examples/jsm/shaders/PoissonDenoiseShader.js

227 lines
6.5 KiB
JavaScript
Raw Permalink Normal View History

2024-06-09 13:55:01 -04:00
import {
Matrix4,
Vector2,
Vector3,
} from 'three';
/**
* References:
* https://openaccess.thecvf.com/content/WACV2021/papers/Khademi_Self-Supervised_Poisson-Gaussian_Denoising_WACV_2021_paper.pdf
* https://arxiv.org/pdf/2206.01856.pdf
*/
const PoissonDenoiseShader = {
name: 'PoissonDenoiseShader',
defines: {
'SAMPLES': 16,
'SAMPLE_VECTORS': generatePdSamplePointInitializer( 16, 2, 1 ),
'NORMAL_VECTOR_TYPE': 1,
'DEPTH_VALUE_SOURCE': 0,
},
uniforms: {
'tDiffuse': { value: null },
'tNormal': { value: null },
'tDepth': { value: null },
'tNoise': { value: null },
'resolution': { value: new Vector2() },
'cameraProjectionMatrixInverse': { value: new Matrix4() },
'lumaPhi': { value: 5. },
'depthPhi': { value: 5. },
'normalPhi': { value: 5. },
'radius': { value: 4. },
'index': { value: 0 }
},
vertexShader: /* glsl */`
varying vec2 vUv;
void main() {
vUv = uv;
gl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );
}`,
fragmentShader: /* glsl */`
varying vec2 vUv;
uniform sampler2D tDiffuse;
uniform sampler2D tNormal;
uniform sampler2D tDepth;
uniform sampler2D tNoise;
uniform vec2 resolution;
uniform mat4 cameraProjectionMatrixInverse;
uniform float lumaPhi;
uniform float depthPhi;
uniform float normalPhi;
uniform float radius;
uniform int index;
#include <common>
#include <packing>
#ifndef SAMPLE_LUMINANCE
#define SAMPLE_LUMINANCE dot(vec3(0.2125, 0.7154, 0.0721), a)
#endif
#ifndef FRAGMENT_OUTPUT
#define FRAGMENT_OUTPUT vec4(denoised, 1.)
#endif
float getLuminance(const in vec3 a) {
return SAMPLE_LUMINANCE;
}
const vec3 poissonDisk[SAMPLES] = SAMPLE_VECTORS;
vec3 getViewPosition(const in vec2 screenPosition, const in float depth) {
vec4 clipSpacePosition = vec4(vec3(screenPosition, depth) * 2.0 - 1.0, 1.0);
vec4 viewSpacePosition = cameraProjectionMatrixInverse * clipSpacePosition;
return viewSpacePosition.xyz / viewSpacePosition.w;
}
float getDepth(const vec2 uv) {
#if DEPTH_VALUE_SOURCE == 1
return textureLod(tDepth, uv.xy, 0.0).a;
#else
return textureLod(tDepth, uv.xy, 0.0).r;
#endif
}
float fetchDepth(const ivec2 uv) {
#if DEPTH_VALUE_SOURCE == 1
return texelFetch(tDepth, uv.xy, 0).a;
#else
return texelFetch(tDepth, uv.xy, 0).r;
#endif
}
vec3 computeNormalFromDepth(const vec2 uv) {
vec2 size = vec2(textureSize(tDepth, 0));
ivec2 p = ivec2(uv * size);
float c0 = fetchDepth(p);
float l2 = fetchDepth(p - ivec2(2, 0));
float l1 = fetchDepth(p - ivec2(1, 0));
float r1 = fetchDepth(p + ivec2(1, 0));
float r2 = fetchDepth(p + ivec2(2, 0));
float b2 = fetchDepth(p - ivec2(0, 2));
float b1 = fetchDepth(p - ivec2(0, 1));
float t1 = fetchDepth(p + ivec2(0, 1));
float t2 = fetchDepth(p + ivec2(0, 2));
float dl = abs((2.0 * l1 - l2) - c0);
float dr = abs((2.0 * r1 - r2) - c0);
float db = abs((2.0 * b1 - b2) - c0);
float dt = abs((2.0 * t1 - t2) - c0);
vec3 ce = getViewPosition(uv, c0).xyz;
vec3 dpdx = (dl < dr) ? ce - getViewPosition((uv - vec2(1.0 / size.x, 0.0)), l1).xyz
: -ce + getViewPosition((uv + vec2(1.0 / size.x, 0.0)), r1).xyz;
vec3 dpdy = (db < dt) ? ce - getViewPosition((uv - vec2(0.0, 1.0 / size.y)), b1).xyz
: -ce + getViewPosition((uv + vec2(0.0, 1.0 / size.y)), t1).xyz;
return normalize(cross(dpdx, dpdy));
}
vec3 getViewNormal(const vec2 uv) {
#if NORMAL_VECTOR_TYPE == 2
return normalize(textureLod(tNormal, uv, 0.).rgb);
#elif NORMAL_VECTOR_TYPE == 1
return unpackRGBToNormal(textureLod(tNormal, uv, 0.).rgb);
#else
return computeNormalFromDepth(uv);
#endif
}
void denoiseSample(in vec3 center, in vec3 viewNormal, in vec3 viewPos, in vec2 sampleUv, inout vec3 denoised, inout float totalWeight) {
vec4 sampleTexel = textureLod(tDiffuse, sampleUv, 0.0);
float sampleDepth = getDepth(sampleUv);
vec3 sampleNormal = getViewNormal(sampleUv);
vec3 neighborColor = sampleTexel.rgb;
vec3 viewPosSample = getViewPosition(sampleUv, sampleDepth);
float normalDiff = dot(viewNormal, sampleNormal);
float normalSimilarity = pow(max(normalDiff, 0.), normalPhi);
float lumaDiff = abs(getLuminance(neighborColor) - getLuminance(center));
float lumaSimilarity = max(1.0 - lumaDiff / lumaPhi, 0.0);
float depthDiff = abs(dot(viewPos - viewPosSample, viewNormal));
float depthSimilarity = max(1. - depthDiff / depthPhi, 0.);
float w = lumaSimilarity * depthSimilarity * normalSimilarity;
denoised += w * neighborColor;
totalWeight += w;
}
void main() {
float depth = getDepth(vUv.xy);
vec3 viewNormal = getViewNormal(vUv);
if (depth == 1. || dot(viewNormal, viewNormal) == 0.) {
discard;
return;
}
vec4 texel = textureLod(tDiffuse, vUv, 0.0);
vec3 center = texel.rgb;
vec3 viewPos = getViewPosition(vUv, depth);
vec2 noiseResolution = vec2(textureSize(tNoise, 0));
vec2 noiseUv = vUv * resolution / noiseResolution;
vec4 noiseTexel = textureLod(tNoise, noiseUv, 0.0);
vec2 noiseVec = vec2(sin(noiseTexel[index % 4] * 2. * PI), cos(noiseTexel[index % 4] * 2. * PI));
mat2 rotationMatrix = mat2(noiseVec.x, -noiseVec.y, noiseVec.x, noiseVec.y);
float totalWeight = 1.0;
vec3 denoised = texel.rgb;
for (int i = 0; i < SAMPLES; i++) {
vec3 sampleDir = poissonDisk[i];
vec2 offset = rotationMatrix * (sampleDir.xy * (1. + sampleDir.z * (radius - 1.)) / resolution);
vec2 sampleUv = vUv + offset;
denoiseSample(center, viewNormal, viewPos, sampleUv, denoised, totalWeight);
}
if (totalWeight > 0.) {
denoised /= totalWeight;
}
gl_FragColor = FRAGMENT_OUTPUT;
}`
};
function generatePdSamplePointInitializer( samples, rings, radiusExponent ) {
const poissonDisk = generateDenoiseSamples(
samples,
rings,
radiusExponent,
);
let glslCode = 'vec3[SAMPLES](';
for ( let i = 0; i < samples; i ++ ) {
const sample = poissonDisk[ i ];
glslCode += `vec3(${sample.x}, ${sample.y}, ${sample.z})${( i < samples - 1 ) ? ',' : ')'}`;
}
return glslCode;
}
function generateDenoiseSamples( numSamples, numRings, radiusExponent ) {
const samples = [];
for ( let i = 0; i < numSamples; i ++ ) {
const angle = 2 * Math.PI * numRings * i / numSamples;
const radius = Math.pow( i / ( numSamples - 1 ), radiusExponent );
samples.push( new Vector3( Math.cos( angle ), Math.sin( angle ), radius ) );
}
return samples;
}
export { generatePdSamplePointInitializer, PoissonDenoiseShader };