node-ejs-renderer/node_modules/three/examples/jsm/loaders/LWOLoader.js

1053 lines
23 KiB
JavaScript
Raw Permalink Normal View History

2024-06-09 13:55:01 -04:00
/**
* @version 1.1.1
*
* @desc Load files in LWO3 and LWO2 format on Three.js
*
* LWO3 format specification:
* https://static.lightwave3d.com/sdk/2019/html/filefmts/lwo3.html
*
* LWO2 format specification:
* https://static.lightwave3d.com/sdk/2019/html/filefmts/lwo2.html
*
**/
import {
AddOperation,
BackSide,
BufferGeometry,
ClampToEdgeWrapping,
Color,
DoubleSide,
EquirectangularReflectionMapping,
EquirectangularRefractionMapping,
FileLoader,
Float32BufferAttribute,
FrontSide,
LineBasicMaterial,
LineSegments,
Loader,
Mesh,
MeshPhongMaterial,
MeshPhysicalMaterial,
MeshStandardMaterial,
MirroredRepeatWrapping,
Points,
PointsMaterial,
RepeatWrapping,
SRGBColorSpace,
TextureLoader,
Vector2
} from 'three';
import { IFFParser } from './lwo/IFFParser.js';
let _lwoTree;
class LWOLoader extends Loader {
constructor( manager, parameters = {} ) {
super( manager );
this.resourcePath = ( parameters.resourcePath !== undefined ) ? parameters.resourcePath : '';
}
load( url, onLoad, onProgress, onError ) {
const scope = this;
const path = ( scope.path === '' ) ? extractParentUrl( url, 'Objects' ) : scope.path;
// give the mesh a default name based on the filename
const modelName = url.split( path ).pop().split( '.' )[ 0 ];
const loader = new FileLoader( this.manager );
loader.setPath( scope.path );
loader.setResponseType( 'arraybuffer' );
loader.load( url, function ( buffer ) {
// console.time( 'Total parsing: ' );
try {
onLoad( scope.parse( buffer, path, modelName ) );
} catch ( e ) {
if ( onError ) {
onError( e );
} else {
console.error( e );
}
scope.manager.itemError( url );
}
// console.timeEnd( 'Total parsing: ' );
}, onProgress, onError );
}
parse( iffBuffer, path, modelName ) {
_lwoTree = new IFFParser().parse( iffBuffer );
// console.log( 'lwoTree', lwoTree );
const textureLoader = new TextureLoader( this.manager ).setPath( this.resourcePath || path ).setCrossOrigin( this.crossOrigin );
return new LWOTreeParser( textureLoader ).parse( modelName );
}
}
// Parse the lwoTree object
class LWOTreeParser {
constructor( textureLoader ) {
this.textureLoader = textureLoader;
}
parse( modelName ) {
this.materials = new MaterialParser( this.textureLoader ).parse();
this.defaultLayerName = modelName;
this.meshes = this.parseLayers();
return {
materials: this.materials,
meshes: this.meshes,
};
}
parseLayers() {
// array of all meshes for building hierarchy
const meshes = [];
// final array containing meshes with scene graph hierarchy set up
const finalMeshes = [];
const geometryParser = new GeometryParser();
const scope = this;
_lwoTree.layers.forEach( function ( layer ) {
const geometry = geometryParser.parse( layer.geometry, layer );
const mesh = scope.parseMesh( geometry, layer );
meshes[ layer.number ] = mesh;
if ( layer.parent === - 1 ) finalMeshes.push( mesh );
else meshes[ layer.parent ].add( mesh );
} );
this.applyPivots( finalMeshes );
return finalMeshes;
}
parseMesh( geometry, layer ) {
let mesh;
const materials = this.getMaterials( geometry.userData.matNames, layer.geometry.type );
if ( layer.geometry.type === 'points' ) mesh = new Points( geometry, materials );
else if ( layer.geometry.type === 'lines' ) mesh = new LineSegments( geometry, materials );
else mesh = new Mesh( geometry, materials );
if ( layer.name ) mesh.name = layer.name;
else mesh.name = this.defaultLayerName + '_layer_' + layer.number;
mesh.userData.pivot = layer.pivot;
return mesh;
}
// TODO: may need to be reversed in z to convert LWO to three.js coordinates
applyPivots( meshes ) {
meshes.forEach( function ( mesh ) {
mesh.traverse( function ( child ) {
const pivot = child.userData.pivot;
child.position.x += pivot[ 0 ];
child.position.y += pivot[ 1 ];
child.position.z += pivot[ 2 ];
if ( child.parent ) {
const parentPivot = child.parent.userData.pivot;
child.position.x -= parentPivot[ 0 ];
child.position.y -= parentPivot[ 1 ];
child.position.z -= parentPivot[ 2 ];
}
} );
} );
}
getMaterials( namesArray, type ) {
const materials = [];
const scope = this;
namesArray.forEach( function ( name, i ) {
materials[ i ] = scope.getMaterialByName( name );
} );
// convert materials to line or point mats if required
if ( type === 'points' || type === 'lines' ) {
materials.forEach( function ( mat, i ) {
const spec = {
color: mat.color,
};
if ( type === 'points' ) {
spec.size = 0.1;
spec.map = mat.map;
materials[ i ] = new PointsMaterial( spec );
} else if ( type === 'lines' ) {
materials[ i ] = new LineBasicMaterial( spec );
}
} );
}
// if there is only one material, return that directly instead of array
const filtered = materials.filter( Boolean );
if ( filtered.length === 1 ) return filtered[ 0 ];
return materials;
}
getMaterialByName( name ) {
return this.materials.filter( function ( m ) {
return m.name === name;
} )[ 0 ];
}
}
class MaterialParser {
constructor( textureLoader ) {
this.textureLoader = textureLoader;
}
parse() {
const materials = [];
this.textures = {};
for ( const name in _lwoTree.materials ) {
if ( _lwoTree.format === 'LWO3' ) {
materials.push( this.parseMaterial( _lwoTree.materials[ name ], name, _lwoTree.textures ) );
} else if ( _lwoTree.format === 'LWO2' ) {
materials.push( this.parseMaterialLwo2( _lwoTree.materials[ name ], name, _lwoTree.textures ) );
}
}
return materials;
}
parseMaterial( materialData, name, textures ) {
let params = {
name: name,
side: this.getSide( materialData.attributes ),
flatShading: this.getSmooth( materialData.attributes ),
};
const connections = this.parseConnections( materialData.connections, materialData.nodes );
const maps = this.parseTextureNodes( connections.maps );
this.parseAttributeImageMaps( connections.attributes, textures, maps, materialData.maps );
const attributes = this.parseAttributes( connections.attributes, maps );
this.parseEnvMap( connections, maps, attributes );
params = Object.assign( maps, params );
params = Object.assign( params, attributes );
const materialType = this.getMaterialType( connections.attributes );
if ( materialType !== MeshPhongMaterial ) delete params.refractionRatio; // PBR materials do not support "refractionRatio"
return new materialType( params );
}
parseMaterialLwo2( materialData, name/*, textures*/ ) {
let params = {
name: name,
side: this.getSide( materialData.attributes ),
flatShading: this.getSmooth( materialData.attributes ),
};
const attributes = this.parseAttributes( materialData.attributes, {} );
params = Object.assign( params, attributes );
return new MeshPhongMaterial( params );
}
// Note: converting from left to right handed coords by switching x -> -x in vertices, and
// then switching mat FrontSide -> BackSide
// NB: this means that FrontSide and BackSide have been switched!
getSide( attributes ) {
if ( ! attributes.side ) return BackSide;
switch ( attributes.side ) {
case 0:
case 1:
return BackSide;
case 2: return FrontSide;
case 3: return DoubleSide;
}
}
getSmooth( attributes ) {
if ( ! attributes.smooth ) return true;
return ! attributes.smooth;
}
parseConnections( connections, nodes ) {
const materialConnections = {
maps: {}
};
const inputName = connections.inputName;
const inputNodeName = connections.inputNodeName;
const nodeName = connections.nodeName;
const scope = this;
inputName.forEach( function ( name, index ) {
if ( name === 'Material' ) {
const matNode = scope.getNodeByRefName( inputNodeName[ index ], nodes );
materialConnections.attributes = matNode.attributes;
materialConnections.envMap = matNode.fileName;
materialConnections.name = inputNodeName[ index ];
}
} );
nodeName.forEach( function ( name, index ) {
if ( name === materialConnections.name ) {
materialConnections.maps[ inputName[ index ] ] = scope.getNodeByRefName( inputNodeName[ index ], nodes );
}
} );
return materialConnections;
}
getNodeByRefName( refName, nodes ) {
for ( const name in nodes ) {
if ( nodes[ name ].refName === refName ) return nodes[ name ];
}
}
parseTextureNodes( textureNodes ) {
const maps = {};
for ( const name in textureNodes ) {
const node = textureNodes[ name ];
const path = node.fileName;
if ( ! path ) return;
const texture = this.loadTexture( path );
if ( node.widthWrappingMode !== undefined ) texture.wrapS = this.getWrappingType( node.widthWrappingMode );
if ( node.heightWrappingMode !== undefined ) texture.wrapT = this.getWrappingType( node.heightWrappingMode );
switch ( name ) {
case 'Color':
maps.map = texture;
maps.map.colorSpace = SRGBColorSpace;
break;
case 'Roughness':
maps.roughnessMap = texture;
maps.roughness = 1;
break;
case 'Specular':
maps.specularMap = texture;
maps.specularMap.colorSpace = SRGBColorSpace;
maps.specular = 0xffffff;
break;
case 'Luminous':
maps.emissiveMap = texture;
maps.emissiveMap.colorSpace = SRGBColorSpace;
maps.emissive = 0x808080;
break;
case 'Luminous Color':
maps.emissive = 0x808080;
break;
case 'Metallic':
maps.metalnessMap = texture;
maps.metalness = 1;
break;
case 'Transparency':
case 'Alpha':
maps.alphaMap = texture;
maps.transparent = true;
break;
case 'Normal':
maps.normalMap = texture;
if ( node.amplitude !== undefined ) maps.normalScale = new Vector2( node.amplitude, node.amplitude );
break;
case 'Bump':
maps.bumpMap = texture;
break;
}
}
// LWO BSDF materials can have both spec and rough, but this is not valid in three
if ( maps.roughnessMap && maps.specularMap ) delete maps.specularMap;
return maps;
}
// maps can also be defined on individual material attributes, parse those here
// This occurs on Standard (Phong) surfaces
parseAttributeImageMaps( attributes, textures, maps ) {
for ( const name in attributes ) {
const attribute = attributes[ name ];
if ( attribute.maps ) {
const mapData = attribute.maps[ 0 ];
const path = this.getTexturePathByIndex( mapData.imageIndex, textures );
if ( ! path ) return;
const texture = this.loadTexture( path );
if ( mapData.wrap !== undefined ) texture.wrapS = this.getWrappingType( mapData.wrap.w );
if ( mapData.wrap !== undefined ) texture.wrapT = this.getWrappingType( mapData.wrap.h );
switch ( name ) {
case 'Color':
maps.map = texture;
maps.map.colorSpace = SRGBColorSpace;
break;
case 'Diffuse':
maps.aoMap = texture;
break;
case 'Roughness':
maps.roughnessMap = texture;
maps.roughness = 1;
break;
case 'Specular':
maps.specularMap = texture;
maps.specularMap.colorSpace = SRGBColorSpace;
maps.specular = 0xffffff;
break;
case 'Luminosity':
maps.emissiveMap = texture;
maps.emissiveMap.colorSpace = SRGBColorSpace;
maps.emissive = 0x808080;
break;
case 'Metallic':
maps.metalnessMap = texture;
maps.metalness = 1;
break;
case 'Transparency':
case 'Alpha':
maps.alphaMap = texture;
maps.transparent = true;
break;
case 'Normal':
maps.normalMap = texture;
break;
case 'Bump':
maps.bumpMap = texture;
break;
}
}
}
}
parseAttributes( attributes, maps ) {
const params = {};
// don't use color data if color map is present
if ( attributes.Color && ! maps.map ) {
params.color = new Color().fromArray( attributes.Color.value );
} else {
params.color = new Color();
}
if ( attributes.Transparency && attributes.Transparency.value !== 0 ) {
params.opacity = 1 - attributes.Transparency.value;
params.transparent = true;
}
if ( attributes[ 'Bump Height' ] ) params.bumpScale = attributes[ 'Bump Height' ].value * 0.1;
this.parsePhysicalAttributes( params, attributes, maps );
this.parseStandardAttributes( params, attributes, maps );
this.parsePhongAttributes( params, attributes, maps );
return params;
}
parsePhysicalAttributes( params, attributes/*, maps*/ ) {
if ( attributes.Clearcoat && attributes.Clearcoat.value > 0 ) {
params.clearcoat = attributes.Clearcoat.value;
if ( attributes[ 'Clearcoat Gloss' ] ) {
params.clearcoatRoughness = 0.5 * ( 1 - attributes[ 'Clearcoat Gloss' ].value );
}
}
}
parseStandardAttributes( params, attributes, maps ) {
if ( attributes.Luminous ) {
params.emissiveIntensity = attributes.Luminous.value;
if ( attributes[ 'Luminous Color' ] && ! maps.emissive ) {
params.emissive = new Color().fromArray( attributes[ 'Luminous Color' ].value );
} else {
params.emissive = new Color( 0x808080 );
}
}
if ( attributes.Roughness && ! maps.roughnessMap ) params.roughness = attributes.Roughness.value;
if ( attributes.Metallic && ! maps.metalnessMap ) params.metalness = attributes.Metallic.value;
}
parsePhongAttributes( params, attributes, maps ) {
if ( attributes[ 'Refraction Index' ] ) params.refractionRatio = 0.98 / attributes[ 'Refraction Index' ].value;
if ( attributes.Diffuse ) params.color.multiplyScalar( attributes.Diffuse.value );
if ( attributes.Reflection ) {
params.reflectivity = attributes.Reflection.value;
params.combine = AddOperation;
}
if ( attributes.Luminosity ) {
params.emissiveIntensity = attributes.Luminosity.value;
if ( ! maps.emissiveMap && ! maps.map ) {
params.emissive = params.color;
} else {
params.emissive = new Color( 0x808080 );
}
}
// parse specular if there is no roughness - we will interpret the material as 'Phong' in this case
if ( ! attributes.Roughness && attributes.Specular && ! maps.specularMap ) {
if ( attributes[ 'Color Highlight' ] ) {
params.specular = new Color().setScalar( attributes.Specular.value ).lerp( params.color.clone().multiplyScalar( attributes.Specular.value ), attributes[ 'Color Highlight' ].value );
} else {
params.specular = new Color().setScalar( attributes.Specular.value );
}
}
if ( params.specular && attributes.Glossiness ) params.shininess = 7 + Math.pow( 2, attributes.Glossiness.value * 12 + 2 );
}
parseEnvMap( connections, maps, attributes ) {
if ( connections.envMap ) {
const envMap = this.loadTexture( connections.envMap );
if ( attributes.transparent && attributes.opacity < 0.999 ) {
envMap.mapping = EquirectangularRefractionMapping;
// Reflectivity and refraction mapping don't work well together in Phong materials
if ( attributes.reflectivity !== undefined ) {
delete attributes.reflectivity;
delete attributes.combine;
}
if ( attributes.metalness !== undefined ) {
attributes.metalness = 1; // For most transparent materials metalness should be set to 1 if not otherwise defined. If set to 0 no refraction will be visible
}
attributes.opacity = 1; // transparency fades out refraction, forcing opacity to 1 ensures a closer visual match to the material in Lightwave.
} else envMap.mapping = EquirectangularReflectionMapping;
maps.envMap = envMap;
}
}
// get texture defined at top level by its index
getTexturePathByIndex( index ) {
let fileName = '';
if ( ! _lwoTree.textures ) return fileName;
_lwoTree.textures.forEach( function ( texture ) {
if ( texture.index === index ) fileName = texture.fileName;
} );
return fileName;
}
loadTexture( path ) {
if ( ! path ) return null;
const texture = this.textureLoader.load(
path,
undefined,
undefined,
function () {
console.warn( 'LWOLoader: non-standard resource hierarchy. Use \`resourcePath\` parameter to specify root content directory.' );
}
);
return texture;
}
// 0 = Reset, 1 = Repeat, 2 = Mirror, 3 = Edge
getWrappingType( num ) {
switch ( num ) {
case 0:
console.warn( 'LWOLoader: "Reset" texture wrapping type is not supported in three.js' );
return ClampToEdgeWrapping;
case 1: return RepeatWrapping;
case 2: return MirroredRepeatWrapping;
case 3: return ClampToEdgeWrapping;
}
}
getMaterialType( nodeData ) {
if ( nodeData.Clearcoat && nodeData.Clearcoat.value > 0 ) return MeshPhysicalMaterial;
if ( nodeData.Roughness ) return MeshStandardMaterial;
return MeshPhongMaterial;
}
}
class GeometryParser {
parse( geoData, layer ) {
const geometry = new BufferGeometry();
geometry.setAttribute( 'position', new Float32BufferAttribute( geoData.points, 3 ) );
const indices = this.splitIndices( geoData.vertexIndices, geoData.polygonDimensions );
geometry.setIndex( indices );
this.parseGroups( geometry, geoData );
geometry.computeVertexNormals();
this.parseUVs( geometry, layer, indices );
this.parseMorphTargets( geometry, layer, indices );
// TODO: z may need to be reversed to account for coordinate system change
geometry.translate( - layer.pivot[ 0 ], - layer.pivot[ 1 ], - layer.pivot[ 2 ] );
// let userData = geometry.userData;
// geometry = geometry.toNonIndexed()
// geometry.userData = userData;
return geometry;
}
// split quads into tris
splitIndices( indices, polygonDimensions ) {
const remappedIndices = [];
let i = 0;
polygonDimensions.forEach( function ( dim ) {
if ( dim < 4 ) {
for ( let k = 0; k < dim; k ++ ) remappedIndices.push( indices[ i + k ] );
} else if ( dim === 4 ) {
remappedIndices.push(
indices[ i ],
indices[ i + 1 ],
indices[ i + 2 ],
indices[ i ],
indices[ i + 2 ],
indices[ i + 3 ]
);
} else if ( dim > 4 ) {
for ( let k = 1; k < dim - 1; k ++ ) {
remappedIndices.push( indices[ i ], indices[ i + k ], indices[ i + k + 1 ] );
}
console.warn( 'LWOLoader: polygons with greater than 4 sides are not supported' );
}
i += dim;
} );
return remappedIndices;
}
// NOTE: currently ignoring poly indices and assuming that they are intelligently ordered
parseGroups( geometry, geoData ) {
const tags = _lwoTree.tags;
const matNames = [];
let elemSize = 3;
if ( geoData.type === 'lines' ) elemSize = 2;
if ( geoData.type === 'points' ) elemSize = 1;
const remappedIndices = this.splitMaterialIndices( geoData.polygonDimensions, geoData.materialIndices );
let indexNum = 0; // create new indices in numerical order
const indexPairs = {}; // original indices mapped to numerical indices
let prevMaterialIndex;
let materialIndex;
let prevStart = 0;
let currentCount = 0;
for ( let i = 0; i < remappedIndices.length; i += 2 ) {
materialIndex = remappedIndices[ i + 1 ];
if ( i === 0 ) matNames[ indexNum ] = tags[ materialIndex ];
if ( prevMaterialIndex === undefined ) prevMaterialIndex = materialIndex;
if ( materialIndex !== prevMaterialIndex ) {
let currentIndex;
if ( indexPairs[ tags[ prevMaterialIndex ] ] ) {
currentIndex = indexPairs[ tags[ prevMaterialIndex ] ];
} else {
currentIndex = indexNum;
indexPairs[ tags[ prevMaterialIndex ] ] = indexNum;
matNames[ indexNum ] = tags[ prevMaterialIndex ];
indexNum ++;
}
geometry.addGroup( prevStart, currentCount, currentIndex );
prevStart += currentCount;
prevMaterialIndex = materialIndex;
currentCount = 0;
}
currentCount += elemSize;
}
// the loop above doesn't add the last group, do that here.
if ( geometry.groups.length > 0 ) {
let currentIndex;
if ( indexPairs[ tags[ materialIndex ] ] ) {
currentIndex = indexPairs[ tags[ materialIndex ] ];
} else {
currentIndex = indexNum;
indexPairs[ tags[ materialIndex ] ] = indexNum;
matNames[ indexNum ] = tags[ materialIndex ];
}
geometry.addGroup( prevStart, currentCount, currentIndex );
}
// Mat names from TAGS chunk, used to build up an array of materials for this geometry
geometry.userData.matNames = matNames;
}
splitMaterialIndices( polygonDimensions, indices ) {
const remappedIndices = [];
polygonDimensions.forEach( function ( dim, i ) {
if ( dim <= 3 ) {
remappedIndices.push( indices[ i * 2 ], indices[ i * 2 + 1 ] );
} else if ( dim === 4 ) {
remappedIndices.push( indices[ i * 2 ], indices[ i * 2 + 1 ], indices[ i * 2 ], indices[ i * 2 + 1 ] );
} else {
// ignore > 4 for now
for ( let k = 0; k < dim - 2; k ++ ) {
remappedIndices.push( indices[ i * 2 ], indices[ i * 2 + 1 ] );
}
}
} );
return remappedIndices;
}
// UV maps:
// 1: are defined via index into an array of points, not into a geometry
// - the geometry is also defined by an index into this array, but the indexes may not match
// 2: there can be any number of UV maps for a single geometry. Here these are combined,
// with preference given to the first map encountered
// 3: UV maps can be partial - that is, defined for only a part of the geometry
// 4: UV maps can be VMAP or VMAD (discontinuous, to allow for seams). In practice, most
// UV maps are defined as partially VMAP and partially VMAD
// VMADs are currently not supported
parseUVs( geometry, layer ) {
// start by creating a UV map set to zero for the whole geometry
const remappedUVs = Array.from( Array( geometry.attributes.position.count * 2 ), function () {
return 0;
} );
for ( const name in layer.uvs ) {
const uvs = layer.uvs[ name ].uvs;
const uvIndices = layer.uvs[ name ].uvIndices;
uvIndices.forEach( function ( i, j ) {
remappedUVs[ i * 2 ] = uvs[ j * 2 ];
remappedUVs[ i * 2 + 1 ] = uvs[ j * 2 + 1 ];
} );
}
geometry.setAttribute( 'uv', new Float32BufferAttribute( remappedUVs, 2 ) );
}
parseMorphTargets( geometry, layer ) {
let num = 0;
for ( const name in layer.morphTargets ) {
const remappedPoints = geometry.attributes.position.array.slice();
if ( ! geometry.morphAttributes.position ) geometry.morphAttributes.position = [];
const morphPoints = layer.morphTargets[ name ].points;
const morphIndices = layer.morphTargets[ name ].indices;
const type = layer.morphTargets[ name ].type;
morphIndices.forEach( function ( i, j ) {
if ( type === 'relative' ) {
remappedPoints[ i * 3 ] += morphPoints[ j * 3 ];
remappedPoints[ i * 3 + 1 ] += morphPoints[ j * 3 + 1 ];
remappedPoints[ i * 3 + 2 ] += morphPoints[ j * 3 + 2 ];
} else {
remappedPoints[ i * 3 ] = morphPoints[ j * 3 ];
remappedPoints[ i * 3 + 1 ] = morphPoints[ j * 3 + 1 ];
remappedPoints[ i * 3 + 2 ] = morphPoints[ j * 3 + 2 ];
}
} );
geometry.morphAttributes.position[ num ] = new Float32BufferAttribute( remappedPoints, 3 );
geometry.morphAttributes.position[ num ].name = name;
num ++;
}
geometry.morphTargetsRelative = false;
}
}
// ************** UTILITY FUNCTIONS **************
function extractParentUrl( url, dir ) {
const index = url.indexOf( dir );
if ( index === - 1 ) return './';
return url.slice( 0, index );
}
export { LWOLoader };