node-ejs-renderer/node_modules/three/examples/jsm/loaders/LDrawLoader.js

2471 lines
56 KiB
JavaScript
Raw Permalink Normal View History

2024-06-09 13:55:01 -04:00
import {
BufferAttribute,
BufferGeometry,
Color,
FileLoader,
Group,
LineBasicMaterial,
LineSegments,
Loader,
Matrix4,
Mesh,
MeshStandardMaterial,
ShaderMaterial,
SRGBColorSpace,
UniformsLib,
UniformsUtils,
Vector3,
Ray
} from 'three';
// Special surface finish tag types.
// Note: "MATERIAL" tag (e.g. GLITTER, SPECKLE) is not implemented
const FINISH_TYPE_DEFAULT = 0;
const FINISH_TYPE_CHROME = 1;
const FINISH_TYPE_PEARLESCENT = 2;
const FINISH_TYPE_RUBBER = 3;
const FINISH_TYPE_MATTE_METALLIC = 4;
const FINISH_TYPE_METAL = 5;
// State machine to search a subobject path.
// The LDraw standard establishes these various possible subfolders.
const FILE_LOCATION_TRY_PARTS = 0;
const FILE_LOCATION_TRY_P = 1;
const FILE_LOCATION_TRY_MODELS = 2;
const FILE_LOCATION_AS_IS = 3;
const FILE_LOCATION_TRY_RELATIVE = 4;
const FILE_LOCATION_TRY_ABSOLUTE = 5;
const FILE_LOCATION_NOT_FOUND = 6;
const MAIN_COLOUR_CODE = '16';
const MAIN_EDGE_COLOUR_CODE = '24';
const COLOR_SPACE_LDRAW = SRGBColorSpace;
const _tempVec0 = new Vector3();
const _tempVec1 = new Vector3();
class LDrawConditionalLineMaterial extends ShaderMaterial {
constructor( parameters ) {
super( {
uniforms: UniformsUtils.merge( [
UniformsLib.fog,
{
diffuse: {
value: new Color()
},
opacity: {
value: 1.0
}
}
] ),
vertexShader: /* glsl */`
attribute vec3 control0;
attribute vec3 control1;
attribute vec3 direction;
varying float discardFlag;
#include <common>
#include <color_pars_vertex>
#include <fog_pars_vertex>
#include <logdepthbuf_pars_vertex>
#include <clipping_planes_pars_vertex>
void main() {
#include <color_vertex>
vec4 mvPosition = modelViewMatrix * vec4( position, 1.0 );
gl_Position = projectionMatrix * mvPosition;
// Transform the line segment ends and control points into camera clip space
vec4 c0 = projectionMatrix * modelViewMatrix * vec4( control0, 1.0 );
vec4 c1 = projectionMatrix * modelViewMatrix * vec4( control1, 1.0 );
vec4 p0 = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );
vec4 p1 = projectionMatrix * modelViewMatrix * vec4( position + direction, 1.0 );
c0.xy /= c0.w;
c1.xy /= c1.w;
p0.xy /= p0.w;
p1.xy /= p1.w;
// Get the direction of the segment and an orthogonal vector
vec2 dir = p1.xy - p0.xy;
vec2 norm = vec2( -dir.y, dir.x );
// Get control point directions from the line
vec2 c0dir = c0.xy - p1.xy;
vec2 c1dir = c1.xy - p1.xy;
// If the vectors to the controls points are pointed in different directions away
// from the line segment then the line should not be drawn.
float d0 = dot( normalize( norm ), normalize( c0dir ) );
float d1 = dot( normalize( norm ), normalize( c1dir ) );
discardFlag = float( sign( d0 ) != sign( d1 ) );
#include <logdepthbuf_vertex>
#include <clipping_planes_vertex>
#include <fog_vertex>
}
`,
fragmentShader: /* glsl */`
uniform vec3 diffuse;
uniform float opacity;
varying float discardFlag;
#include <common>
#include <color_pars_fragment>
#include <fog_pars_fragment>
#include <logdepthbuf_pars_fragment>
#include <clipping_planes_pars_fragment>
void main() {
if ( discardFlag > 0.5 ) discard;
#include <clipping_planes_fragment>
vec3 outgoingLight = vec3( 0.0 );
vec4 diffuseColor = vec4( diffuse, opacity );
#include <logdepthbuf_fragment>
#include <color_fragment>
outgoingLight = diffuseColor.rgb; // simple shader
gl_FragColor = vec4( outgoingLight, diffuseColor.a );
#include <tonemapping_fragment>
#include <colorspace_fragment>
#include <fog_fragment>
#include <premultiplied_alpha_fragment>
}
`,
} );
Object.defineProperties( this, {
opacity: {
get: function () {
return this.uniforms.opacity.value;
},
set: function ( value ) {
this.uniforms.opacity.value = value;
}
},
color: {
get: function () {
return this.uniforms.diffuse.value;
}
}
} );
this.setValues( parameters );
this.isLDrawConditionalLineMaterial = true;
}
}
class ConditionalLineSegments extends LineSegments {
constructor( geometry, material ) {
super( geometry, material );
this.isConditionalLine = true;
}
}
function generateFaceNormals( faces ) {
for ( let i = 0, l = faces.length; i < l; i ++ ) {
const face = faces[ i ];
const vertices = face.vertices;
const v0 = vertices[ 0 ];
const v1 = vertices[ 1 ];
const v2 = vertices[ 2 ];
_tempVec0.subVectors( v1, v0 );
_tempVec1.subVectors( v2, v1 );
face.faceNormal = new Vector3()
.crossVectors( _tempVec0, _tempVec1 )
.normalize();
}
}
const _ray = new Ray();
function smoothNormals( faces, lineSegments, checkSubSegments = false ) {
// NOTE: 1e2 is pretty coarse but was chosen to quantize the resulting value because
// it allows edges to be smoothed as expected (see minifig arms).
// --
// And the vector values are initialize multiplied by 1 + 1e-10 to account for floating
// point errors on vertices along quantization boundaries. Ie after matrix multiplication
// vertices that should be merged might be set to "1.7" and "1.6999..." meaning they won't
// get merged. This added epsilon attempts to push these error values to the same quantized
// value for the sake of hashing. See "AT-ST mini" dishes. See mrdoob/three#23169.
const hashMultiplier = ( 1 + 1e-10 ) * 1e2;
function hashVertex( v ) {
const x = ~ ~ ( v.x * hashMultiplier );
const y = ~ ~ ( v.y * hashMultiplier );
const z = ~ ~ ( v.z * hashMultiplier );
return `${ x },${ y },${ z }`;
}
function hashEdge( v0, v1 ) {
return `${ hashVertex( v0 ) }_${ hashVertex( v1 ) }`;
}
// converts the two vertices to a ray with a normalized direction and origin of 0, 0, 0 projected
// onto the original line.
function toNormalizedRay( v0, v1, targetRay ) {
targetRay.direction.subVectors( v1, v0 ).normalize();
const scalar = v0.dot( targetRay.direction );
targetRay.origin.copy( v0 ).addScaledVector( targetRay.direction, - scalar );
return targetRay;
}
function hashRay( ray ) {
return hashEdge( ray.origin, ray.direction );
}
const hardEdges = new Set();
const hardEdgeRays = new Map();
const halfEdgeList = {};
const normals = [];
// Save the list of hard edges by hash
for ( let i = 0, l = lineSegments.length; i < l; i ++ ) {
const ls = lineSegments[ i ];
const vertices = ls.vertices;
const v0 = vertices[ 0 ];
const v1 = vertices[ 1 ];
hardEdges.add( hashEdge( v0, v1 ) );
hardEdges.add( hashEdge( v1, v0 ) );
// only generate the hard edge ray map if we're checking subsegments because it's more expensive to check
// and requires more memory.
if ( checkSubSegments ) {
// add both ray directions to the map
const ray = toNormalizedRay( v0, v1, new Ray() );
const rh1 = hashRay( ray );
if ( ! hardEdgeRays.has( rh1 ) ) {
toNormalizedRay( v1, v0, ray );
const rh2 = hashRay( ray );
const info = {
ray,
distances: [],
};
hardEdgeRays.set( rh1, info );
hardEdgeRays.set( rh2, info );
}
// store both segments ends in min, max order in the distances array to check if a face edge is a
// subsegment later.
const info = hardEdgeRays.get( rh1 );
let d0 = info.ray.direction.dot( v0 );
let d1 = info.ray.direction.dot( v1 );
if ( d0 > d1 ) {
[ d0, d1 ] = [ d1, d0 ];
}
info.distances.push( d0, d1 );
}
}
// track the half edges associated with each triangle
for ( let i = 0, l = faces.length; i < l; i ++ ) {
const tri = faces[ i ];
const vertices = tri.vertices;
const vertCount = vertices.length;
for ( let i2 = 0; i2 < vertCount; i2 ++ ) {
const index = i2;
const next = ( i2 + 1 ) % vertCount;
const v0 = vertices[ index ];
const v1 = vertices[ next ];
const hash = hashEdge( v0, v1 );
// don't add the triangle if the edge is supposed to be hard
if ( hardEdges.has( hash ) ) {
continue;
}
// if checking subsegments then check to see if this edge lies on a hard edge ray and whether its within any ray bounds
if ( checkSubSegments ) {
toNormalizedRay( v0, v1, _ray );
const rayHash = hashRay( _ray );
if ( hardEdgeRays.has( rayHash ) ) {
const info = hardEdgeRays.get( rayHash );
const { ray, distances } = info;
let d0 = ray.direction.dot( v0 );
let d1 = ray.direction.dot( v1 );
if ( d0 > d1 ) {
[ d0, d1 ] = [ d1, d0 ];
}
// return early if the face edge is found to be a subsegment of a line edge meaning the edge will have "hard" normals
let found = false;
for ( let i = 0, l = distances.length; i < l; i += 2 ) {
if ( d0 >= distances[ i ] && d1 <= distances[ i + 1 ] ) {
found = true;
break;
}
}
if ( found ) {
continue;
}
}
}
const info = {
index: index,
tri: tri
};
halfEdgeList[ hash ] = info;
}
}
// Iterate until we've tried to connect all faces to share normals
while ( true ) {
// Stop if there are no more faces left
let halfEdge = null;
for ( const key in halfEdgeList ) {
halfEdge = halfEdgeList[ key ];
break;
}
if ( halfEdge === null ) {
break;
}
// Exhaustively find all connected faces
const queue = [ halfEdge ];
while ( queue.length > 0 ) {
// initialize all vertex normals in this triangle
const tri = queue.pop().tri;
const vertices = tri.vertices;
const vertNormals = tri.normals;
const faceNormal = tri.faceNormal;
// Check if any edge is connected to another triangle edge
const vertCount = vertices.length;
for ( let i2 = 0; i2 < vertCount; i2 ++ ) {
const index = i2;
const next = ( i2 + 1 ) % vertCount;
const v0 = vertices[ index ];
const v1 = vertices[ next ];
// delete this triangle from the list so it won't be found again
const hash = hashEdge( v0, v1 );
delete halfEdgeList[ hash ];
const reverseHash = hashEdge( v1, v0 );
const otherInfo = halfEdgeList[ reverseHash ];
if ( otherInfo ) {
const otherTri = otherInfo.tri;
const otherIndex = otherInfo.index;
const otherNormals = otherTri.normals;
const otherVertCount = otherNormals.length;
const otherFaceNormal = otherTri.faceNormal;
// NOTE: If the angle between faces is > 67.5 degrees then assume it's
// hard edge. There are some cases where the line segments do not line up exactly
// with or span multiple triangle edges (see Lunar Vehicle wheels).
if ( Math.abs( otherTri.faceNormal.dot( tri.faceNormal ) ) < 0.25 ) {
continue;
}
// if this triangle has already been traversed then it won't be in
// the halfEdgeList. If it has not then add it to the queue and delete
// it so it won't be found again.
if ( reverseHash in halfEdgeList ) {
queue.push( otherInfo );
delete halfEdgeList[ reverseHash ];
}
// share the first normal
const otherNext = ( otherIndex + 1 ) % otherVertCount;
if (
vertNormals[ index ] && otherNormals[ otherNext ] &&
vertNormals[ index ] !== otherNormals[ otherNext ]
) {
otherNormals[ otherNext ].norm.add( vertNormals[ index ].norm );
vertNormals[ index ].norm = otherNormals[ otherNext ].norm;
}
let sharedNormal1 = vertNormals[ index ] || otherNormals[ otherNext ];
if ( sharedNormal1 === null ) {
// it's possible to encounter an edge of a triangle that has already been traversed meaning
// both edges already have different normals defined and shared. To work around this we create
// a wrapper object so when those edges are merged the normals can be updated everywhere.
sharedNormal1 = { norm: new Vector3() };
normals.push( sharedNormal1.norm );
}
if ( vertNormals[ index ] === null ) {
vertNormals[ index ] = sharedNormal1;
sharedNormal1.norm.add( faceNormal );
}
if ( otherNormals[ otherNext ] === null ) {
otherNormals[ otherNext ] = sharedNormal1;
sharedNormal1.norm.add( otherFaceNormal );
}
// share the second normal
if (
vertNormals[ next ] && otherNormals[ otherIndex ] &&
vertNormals[ next ] !== otherNormals[ otherIndex ]
) {
otherNormals[ otherIndex ].norm.add( vertNormals[ next ].norm );
vertNormals[ next ].norm = otherNormals[ otherIndex ].norm;
}
let sharedNormal2 = vertNormals[ next ] || otherNormals[ otherIndex ];
if ( sharedNormal2 === null ) {
sharedNormal2 = { norm: new Vector3() };
normals.push( sharedNormal2.norm );
}
if ( vertNormals[ next ] === null ) {
vertNormals[ next ] = sharedNormal2;
sharedNormal2.norm.add( faceNormal );
}
if ( otherNormals[ otherIndex ] === null ) {
otherNormals[ otherIndex ] = sharedNormal2;
sharedNormal2.norm.add( otherFaceNormal );
}
}
}
}
}
// The normals of each face have been added up so now we average them by normalizing the vector.
for ( let i = 0, l = normals.length; i < l; i ++ ) {
normals[ i ].normalize();
}
}
function isPartType( type ) {
return type === 'Part' || type === 'Unofficial_Part';
}
function isPrimitiveType( type ) {
return /primitive/i.test( type ) || type === 'Subpart';
}
class LineParser {
constructor( line, lineNumber ) {
this.line = line;
this.lineLength = line.length;
this.currentCharIndex = 0;
this.currentChar = ' ';
this.lineNumber = lineNumber;
}
seekNonSpace() {
while ( this.currentCharIndex < this.lineLength ) {
this.currentChar = this.line.charAt( this.currentCharIndex );
if ( this.currentChar !== ' ' && this.currentChar !== '\t' ) {
return;
}
this.currentCharIndex ++;
}
}
getToken() {
const pos0 = this.currentCharIndex ++;
// Seek space
while ( this.currentCharIndex < this.lineLength ) {
this.currentChar = this.line.charAt( this.currentCharIndex );
if ( this.currentChar === ' ' || this.currentChar === '\t' ) {
break;
}
this.currentCharIndex ++;
}
const pos1 = this.currentCharIndex;
this.seekNonSpace();
return this.line.substring( pos0, pos1 );
}
getVector() {
return new Vector3( parseFloat( this.getToken() ), parseFloat( this.getToken() ), parseFloat( this.getToken() ) );
}
getRemainingString() {
return this.line.substring( this.currentCharIndex, this.lineLength );
}
isAtTheEnd() {
return this.currentCharIndex >= this.lineLength;
}
setToEnd() {
this.currentCharIndex = this.lineLength;
}
getLineNumberString() {
return this.lineNumber >= 0 ? ' at line ' + this.lineNumber : '';
}
}
// Fetches and parses an intermediate representation of LDraw parts files.
class LDrawParsedCache {
constructor( loader ) {
this.loader = loader;
this._cache = {};
}
cloneResult( original ) {
const result = {};
// vertices are transformed and normals computed before being converted to geometry
// so these pieces must be cloned.
result.faces = original.faces.map( face => {
return {
colorCode: face.colorCode,
material: face.material,
vertices: face.vertices.map( v => v.clone() ),
normals: face.normals.map( () => null ),
faceNormal: null
};
} );
result.conditionalSegments = original.conditionalSegments.map( face => {
return {
colorCode: face.colorCode,
material: face.material,
vertices: face.vertices.map( v => v.clone() ),
controlPoints: face.controlPoints.map( v => v.clone() )
};
} );
result.lineSegments = original.lineSegments.map( face => {
return {
colorCode: face.colorCode,
material: face.material,
vertices: face.vertices.map( v => v.clone() )
};
} );
// none if this is subsequently modified
result.type = original.type;
result.category = original.category;
result.keywords = original.keywords;
result.author = original.author;
result.subobjects = original.subobjects;
result.fileName = original.fileName;
result.totalFaces = original.totalFaces;
result.startingBuildingStep = original.startingBuildingStep;
result.materials = original.materials;
result.group = null;
return result;
}
async fetchData( fileName ) {
let triedLowerCase = false;
let locationState = FILE_LOCATION_TRY_PARTS;
while ( locationState !== FILE_LOCATION_NOT_FOUND ) {
let subobjectURL = fileName;
switch ( locationState ) {
case FILE_LOCATION_AS_IS:
locationState = locationState + 1;
break;
case FILE_LOCATION_TRY_PARTS:
subobjectURL = 'parts/' + subobjectURL;
locationState = locationState + 1;
break;
case FILE_LOCATION_TRY_P:
subobjectURL = 'p/' + subobjectURL;
locationState = locationState + 1;
break;
case FILE_LOCATION_TRY_MODELS:
subobjectURL = 'models/' + subobjectURL;
locationState = locationState + 1;
break;
case FILE_LOCATION_TRY_RELATIVE:
subobjectURL = fileName.substring( 0, fileName.lastIndexOf( '/' ) + 1 ) + subobjectURL;
locationState = locationState + 1;
break;
case FILE_LOCATION_TRY_ABSOLUTE:
if ( triedLowerCase ) {
// Try absolute path
locationState = FILE_LOCATION_NOT_FOUND;
} else {
// Next attempt is lower case
fileName = fileName.toLowerCase();
subobjectURL = fileName;
triedLowerCase = true;
locationState = FILE_LOCATION_TRY_PARTS;
}
break;
}
const loader = this.loader;
const fileLoader = new FileLoader( loader.manager );
fileLoader.setPath( loader.partsLibraryPath );
fileLoader.setRequestHeader( loader.requestHeader );
fileLoader.setWithCredentials( loader.withCredentials );
try {
const text = await fileLoader.loadAsync( subobjectURL );
return text;
} catch ( _ ) {
continue;
}
}
throw new Error( 'LDrawLoader: Subobject "' + fileName + '" could not be loaded.' );
}
parse( text, fileName = null ) {
const loader = this.loader;
// final results
const faces = [];
const lineSegments = [];
const conditionalSegments = [];
const subobjects = [];
const materials = {};
const getLocalMaterial = colorCode => {
return materials[ colorCode ] || null;
};
let type = 'Model';
let category = null;
let keywords = null;
let author = null;
let totalFaces = 0;
// split into lines
if ( text.indexOf( '\r\n' ) !== - 1 ) {
// This is faster than String.split with regex that splits on both
text = text.replace( /\r\n/g, '\n' );
}
const lines = text.split( '\n' );
const numLines = lines.length;
let parsingEmbeddedFiles = false;
let currentEmbeddedFileName = null;
let currentEmbeddedText = null;
let bfcCertified = false;
let bfcCCW = true;
let bfcInverted = false;
let bfcCull = true;
let startingBuildingStep = false;
// Parse all line commands
for ( let lineIndex = 0; lineIndex < numLines; lineIndex ++ ) {
const line = lines[ lineIndex ];
if ( line.length === 0 ) continue;
if ( parsingEmbeddedFiles ) {
if ( line.startsWith( '0 FILE ' ) ) {
// Save previous embedded file in the cache
this.setData( currentEmbeddedFileName, currentEmbeddedText );
// New embedded text file
currentEmbeddedFileName = line.substring( 7 );
currentEmbeddedText = '';
} else {
currentEmbeddedText += line + '\n';
}
continue;
}
const lp = new LineParser( line, lineIndex + 1 );
lp.seekNonSpace();
if ( lp.isAtTheEnd() ) {
// Empty line
continue;
}
// Parse the line type
const lineType = lp.getToken();
let material;
let colorCode;
let segment;
let ccw;
let doubleSided;
let v0, v1, v2, v3, c0, c1;
switch ( lineType ) {
// Line type 0: Comment or META
case '0':
// Parse meta directive
const meta = lp.getToken();
if ( meta ) {
switch ( meta ) {
case '!LDRAW_ORG':
type = lp.getToken();
break;
case '!COLOUR':
material = loader.parseColorMetaDirective( lp );
if ( material ) {
materials[ material.userData.code ] = material;
} else {
console.warn( 'LDrawLoader: Error parsing material' + lp.getLineNumberString() );
}
break;
case '!CATEGORY':
category = lp.getToken();
break;
case '!KEYWORDS':
const newKeywords = lp.getRemainingString().split( ',' );
if ( newKeywords.length > 0 ) {
if ( ! keywords ) {
keywords = [];
}
newKeywords.forEach( function ( keyword ) {
keywords.push( keyword.trim() );
} );
}
break;
case 'FILE':
if ( lineIndex > 0 ) {
// Start embedded text files parsing
parsingEmbeddedFiles = true;
currentEmbeddedFileName = lp.getRemainingString();
currentEmbeddedText = '';
bfcCertified = false;
bfcCCW = true;
}
break;
case 'BFC':
// Changes to the backface culling state
while ( ! lp.isAtTheEnd() ) {
const token = lp.getToken();
switch ( token ) {
case 'CERTIFY':
case 'NOCERTIFY':
bfcCertified = token === 'CERTIFY';
bfcCCW = true;
break;
case 'CW':
case 'CCW':
bfcCCW = token === 'CCW';
break;
case 'INVERTNEXT':
bfcInverted = true;
break;
case 'CLIP':
case 'NOCLIP':
bfcCull = token === 'CLIP';
break;
default:
console.warn( 'THREE.LDrawLoader: BFC directive "' + token + '" is unknown.' );
break;
}
}
break;
case 'STEP':
startingBuildingStep = true;
break;
case 'Author:':
author = lp.getToken();
break;
default:
// Other meta directives are not implemented
break;
}
}
break;
// Line type 1: Sub-object file
case '1':
colorCode = lp.getToken();
material = getLocalMaterial( colorCode );
const posX = parseFloat( lp.getToken() );
const posY = parseFloat( lp.getToken() );
const posZ = parseFloat( lp.getToken() );
const m0 = parseFloat( lp.getToken() );
const m1 = parseFloat( lp.getToken() );
const m2 = parseFloat( lp.getToken() );
const m3 = parseFloat( lp.getToken() );
const m4 = parseFloat( lp.getToken() );
const m5 = parseFloat( lp.getToken() );
const m6 = parseFloat( lp.getToken() );
const m7 = parseFloat( lp.getToken() );
const m8 = parseFloat( lp.getToken() );
const matrix = new Matrix4().set(
m0, m1, m2, posX,
m3, m4, m5, posY,
m6, m7, m8, posZ,
0, 0, 0, 1
);
let fileName = lp.getRemainingString().trim().replace( /\\/g, '/' );
if ( loader.fileMap[ fileName ] ) {
// Found the subobject path in the preloaded file path map
fileName = loader.fileMap[ fileName ];
} else {
// Standardized subfolders
if ( fileName.startsWith( 's/' ) ) {
fileName = 'parts/' + fileName;
} else if ( fileName.startsWith( '48/' ) ) {
fileName = 'p/' + fileName;
}
}
subobjects.push( {
material: material,
colorCode: colorCode,
matrix: matrix,
fileName: fileName,
inverted: bfcInverted,
startingBuildingStep: startingBuildingStep
} );
startingBuildingStep = false;
bfcInverted = false;
break;
// Line type 2: Line segment
case '2':
colorCode = lp.getToken();
material = getLocalMaterial( colorCode );
v0 = lp.getVector();
v1 = lp.getVector();
segment = {
material: material,
colorCode: colorCode,
vertices: [ v0, v1 ],
};
lineSegments.push( segment );
break;
// Line type 5: Conditional Line segment
case '5':
colorCode = lp.getToken();
material = getLocalMaterial( colorCode );
v0 = lp.getVector();
v1 = lp.getVector();
c0 = lp.getVector();
c1 = lp.getVector();
segment = {
material: material,
colorCode: colorCode,
vertices: [ v0, v1 ],
controlPoints: [ c0, c1 ],
};
conditionalSegments.push( segment );
break;
// Line type 3: Triangle
case '3':
colorCode = lp.getToken();
material = getLocalMaterial( colorCode );
ccw = bfcCCW;
doubleSided = ! bfcCertified || ! bfcCull;
if ( ccw === true ) {
v0 = lp.getVector();
v1 = lp.getVector();
v2 = lp.getVector();
} else {
v2 = lp.getVector();
v1 = lp.getVector();
v0 = lp.getVector();
}
faces.push( {
material: material,
colorCode: colorCode,
faceNormal: null,
vertices: [ v0, v1, v2 ],
normals: [ null, null, null ],
} );
totalFaces ++;
if ( doubleSided === true ) {
faces.push( {
material: material,
colorCode: colorCode,
faceNormal: null,
vertices: [ v2, v1, v0 ],
normals: [ null, null, null ],
} );
totalFaces ++;
}
break;
// Line type 4: Quadrilateral
case '4':
colorCode = lp.getToken();
material = getLocalMaterial( colorCode );
ccw = bfcCCW;
doubleSided = ! bfcCertified || ! bfcCull;
if ( ccw === true ) {
v0 = lp.getVector();
v1 = lp.getVector();
v2 = lp.getVector();
v3 = lp.getVector();
} else {
v3 = lp.getVector();
v2 = lp.getVector();
v1 = lp.getVector();
v0 = lp.getVector();
}
// specifically place the triangle diagonal in the v0 and v1 slots so we can
// account for the doubling of vertices later when smoothing normals.
faces.push( {
material: material,
colorCode: colorCode,
faceNormal: null,
vertices: [ v0, v1, v2, v3 ],
normals: [ null, null, null, null ],
} );
totalFaces += 2;
if ( doubleSided === true ) {
faces.push( {
material: material,
colorCode: colorCode,
faceNormal: null,
vertices: [ v3, v2, v1, v0 ],
normals: [ null, null, null, null ],
} );
totalFaces += 2;
}
break;
default:
throw new Error( 'LDrawLoader: Unknown line type "' + lineType + '"' + lp.getLineNumberString() + '.' );
}
}
if ( parsingEmbeddedFiles ) {
this.setData( currentEmbeddedFileName, currentEmbeddedText );
}
return {
faces,
conditionalSegments,
lineSegments,
type,
category,
keywords,
author,
subobjects,
totalFaces,
startingBuildingStep,
materials,
fileName,
group: null
};
}
// returns an (optionally cloned) instance of the data
getData( fileName, clone = true ) {
const key = fileName.toLowerCase();
const result = this._cache[ key ];
if ( result === null || result instanceof Promise ) {
return null;
}
if ( clone ) {
return this.cloneResult( result );
} else {
return result;
}
}
// kicks off a fetch and parse of the requested data if it hasn't already been loaded. Returns when
// the data is ready to use and can be retrieved synchronously with "getData".
async ensureDataLoaded( fileName ) {
const key = fileName.toLowerCase();
if ( ! ( key in this._cache ) ) {
// replace the promise with a copy of the parsed data for immediate processing
this._cache[ key ] = this.fetchData( fileName ).then( text => {
const info = this.parse( text, fileName );
this._cache[ key ] = info;
return info;
} );
}
await this._cache[ key ];
}
// sets the data in the cache from parsed data
setData( fileName, text ) {
const key = fileName.toLowerCase();
this._cache[ key ] = this.parse( text, fileName );
}
}
// returns the material for an associated color code. If the color code is 16 for a face or 24 for
// an edge then the passthroughColorCode is used.
function getMaterialFromCode( colorCode, parentColorCode, materialHierarchy, forEdge ) {
const isPassthrough = ! forEdge && colorCode === MAIN_COLOUR_CODE || forEdge && colorCode === MAIN_EDGE_COLOUR_CODE;
if ( isPassthrough ) {
colorCode = parentColorCode;
}
return materialHierarchy[ colorCode ] || null;
}
// Class used to parse and build LDraw parts as three.js objects and cache them if they're a "Part" type.
class LDrawPartsGeometryCache {
constructor( loader ) {
this.loader = loader;
this.parseCache = new LDrawParsedCache( loader );
this._cache = {};
}
// Convert the given file information into a mesh by processing subobjects.
async processIntoMesh( info ) {
const loader = this.loader;
const parseCache = this.parseCache;
const faceMaterials = new Set();
// Processes the part subobject information to load child parts and merge geometry onto part
// piece object.
const processInfoSubobjects = async ( info, subobject = null ) => {
const subobjects = info.subobjects;
const promises = [];
// Trigger load of all subobjects. If a subobject isn't a primitive then load it as a separate
// group which lets instruction steps apply correctly.
for ( let i = 0, l = subobjects.length; i < l; i ++ ) {
const subobject = subobjects[ i ];
const promise = parseCache.ensureDataLoaded( subobject.fileName ).then( () => {
const subobjectInfo = parseCache.getData( subobject.fileName, false );
if ( ! isPrimitiveType( subobjectInfo.type ) ) {
return this.loadModel( subobject.fileName ).catch( error => {
console.warn( error );
return null;
} );
}
return processInfoSubobjects( parseCache.getData( subobject.fileName ), subobject );
} );
promises.push( promise );
}
const group = new Group();
group.userData.category = info.category;
group.userData.keywords = info.keywords;
group.userData.author = info.author;
group.userData.type = info.type;
group.userData.fileName = info.fileName;
info.group = group;
const subobjectInfos = await Promise.all( promises );
for ( let i = 0, l = subobjectInfos.length; i < l; i ++ ) {
const subobject = info.subobjects[ i ];
const subobjectInfo = subobjectInfos[ i ];
if ( subobjectInfo === null ) {
// the subobject failed to load
continue;
}
// if the subobject was loaded as a separate group then apply the parent scopes materials
if ( subobjectInfo.isGroup ) {
const subobjectGroup = subobjectInfo;
subobject.matrix.decompose( subobjectGroup.position, subobjectGroup.quaternion, subobjectGroup.scale );
subobjectGroup.userData.startingBuildingStep = subobject.startingBuildingStep;
subobjectGroup.name = subobject.fileName;
loader.applyMaterialsToMesh( subobjectGroup, subobject.colorCode, info.materials );
subobjectGroup.userData.colorCode = subobject.colorCode;
group.add( subobjectGroup );
continue;
}
// add the subobject group if it has children in case it has both children and primitives
if ( subobjectInfo.group.children.length ) {
group.add( subobjectInfo.group );
}
// transform the primitives into the local space of the parent piece and append them to
// to the parent primitives list.
const parentLineSegments = info.lineSegments;
const parentConditionalSegments = info.conditionalSegments;
const parentFaces = info.faces;
const lineSegments = subobjectInfo.lineSegments;
const conditionalSegments = subobjectInfo.conditionalSegments;
const faces = subobjectInfo.faces;
const matrix = subobject.matrix;
const inverted = subobject.inverted;
const matrixScaleInverted = matrix.determinant() < 0;
const colorCode = subobject.colorCode;
const lineColorCode = colorCode === MAIN_COLOUR_CODE ? MAIN_EDGE_COLOUR_CODE : colorCode;
for ( let i = 0, l = lineSegments.length; i < l; i ++ ) {
const ls = lineSegments[ i ];
const vertices = ls.vertices;
vertices[ 0 ].applyMatrix4( matrix );
vertices[ 1 ].applyMatrix4( matrix );
ls.colorCode = ls.colorCode === MAIN_EDGE_COLOUR_CODE ? lineColorCode : ls.colorCode;
ls.material = ls.material || getMaterialFromCode( ls.colorCode, ls.colorCode, info.materials, true );
parentLineSegments.push( ls );
}
for ( let i = 0, l = conditionalSegments.length; i < l; i ++ ) {
const os = conditionalSegments[ i ];
const vertices = os.vertices;
const controlPoints = os.controlPoints;
vertices[ 0 ].applyMatrix4( matrix );
vertices[ 1 ].applyMatrix4( matrix );
controlPoints[ 0 ].applyMatrix4( matrix );
controlPoints[ 1 ].applyMatrix4( matrix );
os.colorCode = os.colorCode === MAIN_EDGE_COLOUR_CODE ? lineColorCode : os.colorCode;
os.material = os.material || getMaterialFromCode( os.colorCode, os.colorCode, info.materials, true );
parentConditionalSegments.push( os );
}
for ( let i = 0, l = faces.length; i < l; i ++ ) {
const tri = faces[ i ];
const vertices = tri.vertices;
for ( let i = 0, l = vertices.length; i < l; i ++ ) {
vertices[ i ].applyMatrix4( matrix );
}
tri.colorCode = tri.colorCode === MAIN_COLOUR_CODE ? colorCode : tri.colorCode;
tri.material = tri.material || getMaterialFromCode( tri.colorCode, colorCode, info.materials, false );
faceMaterials.add( tri.colorCode );
// If the scale of the object is negated then the triangle winding order
// needs to be flipped.
if ( matrixScaleInverted !== inverted ) {
vertices.reverse();
}
parentFaces.push( tri );
}
info.totalFaces += subobjectInfo.totalFaces;
}
// Apply the parent subobjects pass through material code to this object. This is done several times due
// to material scoping.
if ( subobject ) {
loader.applyMaterialsToMesh( group, subobject.colorCode, info.materials );
group.userData.colorCode = subobject.colorCode;
}
return info;
};
// Track material use to see if we need to use the normal smooth slow path for hard edges.
for ( let i = 0, l = info.faces; i < l; i ++ ) {
faceMaterials.add( info.faces[ i ].colorCode );
}
await processInfoSubobjects( info );
if ( loader.smoothNormals ) {
const checkSubSegments = faceMaterials.size > 1;
generateFaceNormals( info.faces );
smoothNormals( info.faces, info.lineSegments, checkSubSegments );
}
// Add the primitive objects and metadata.
const group = info.group;
if ( info.faces.length > 0 ) {
group.add( createObject( this.loader, info.faces, 3, false, info.totalFaces ) );
}
if ( info.lineSegments.length > 0 ) {
group.add( createObject( this.loader, info.lineSegments, 2 ) );
}
if ( info.conditionalSegments.length > 0 ) {
group.add( createObject( this.loader, info.conditionalSegments, 2, true ) );
}
return group;
}
hasCachedModel( fileName ) {
return fileName !== null && fileName.toLowerCase() in this._cache;
}
async getCachedModel( fileName ) {
if ( fileName !== null && this.hasCachedModel( fileName ) ) {
const key = fileName.toLowerCase();
const group = await this._cache[ key ];
return group.clone();
} else {
return null;
}
}
// Loads and parses the model with the given file name. Returns a cached copy if available.
async loadModel( fileName ) {
const parseCache = this.parseCache;
const key = fileName.toLowerCase();
if ( this.hasCachedModel( fileName ) ) {
// Return cached model if available.
return this.getCachedModel( fileName );
} else {
// Otherwise parse a new model.
// Ensure the file data is loaded and pre parsed.
await parseCache.ensureDataLoaded( fileName );
const info = parseCache.getData( fileName );
const promise = this.processIntoMesh( info );
// Now that the file has loaded it's possible that another part parse has been waiting in parallel
// so check the cache again to see if it's been added since the last async operation so we don't
// do unnecessary work.
if ( this.hasCachedModel( fileName ) ) {
return this.getCachedModel( fileName );
}
// Cache object if it's a part so it can be reused later.
if ( isPartType( info.type ) ) {
this._cache[ key ] = promise;
}
// return a copy
const group = await promise;
return group.clone();
}
}
// parses the given model text into a renderable object. Returns cached copy if available.
async parseModel( text ) {
const parseCache = this.parseCache;
const info = parseCache.parse( text );
if ( isPartType( info.type ) && this.hasCachedModel( info.fileName ) ) {
return this.getCachedModel( info.fileName );
}
return this.processIntoMesh( info );
}
}
function sortByMaterial( a, b ) {
if ( a.colorCode === b.colorCode ) {
return 0;
}
if ( a.colorCode < b.colorCode ) {
return - 1;
}
return 1;
}
function createObject( loader, elements, elementSize, isConditionalSegments = false, totalElements = null ) {
// Creates a LineSegments (elementSize = 2) or a Mesh (elementSize = 3 )
// With per face / segment material, implemented with mesh groups and materials array
// Sort the faces or line segments by color code to make later the mesh groups
elements.sort( sortByMaterial );
if ( totalElements === null ) {
totalElements = elements.length;
}
const positions = new Float32Array( elementSize * totalElements * 3 );
const normals = elementSize === 3 ? new Float32Array( elementSize * totalElements * 3 ) : null;
const materials = [];
const quadArray = new Array( 6 );
const bufferGeometry = new BufferGeometry();
let prevMaterial = null;
let index0 = 0;
let numGroupVerts = 0;
let offset = 0;
for ( let iElem = 0, nElem = elements.length; iElem < nElem; iElem ++ ) {
const elem = elements[ iElem ];
let vertices = elem.vertices;
if ( vertices.length === 4 ) {
quadArray[ 0 ] = vertices[ 0 ];
quadArray[ 1 ] = vertices[ 1 ];
quadArray[ 2 ] = vertices[ 2 ];
quadArray[ 3 ] = vertices[ 0 ];
quadArray[ 4 ] = vertices[ 2 ];
quadArray[ 5 ] = vertices[ 3 ];
vertices = quadArray;
}
for ( let j = 0, l = vertices.length; j < l; j ++ ) {
const v = vertices[ j ];
const index = offset + j * 3;
positions[ index + 0 ] = v.x;
positions[ index + 1 ] = v.y;
positions[ index + 2 ] = v.z;
}
// create the normals array if this is a set of faces
if ( elementSize === 3 ) {
if ( ! elem.faceNormal ) {
const v0 = vertices[ 0 ];
const v1 = vertices[ 1 ];
const v2 = vertices[ 2 ];
_tempVec0.subVectors( v1, v0 );
_tempVec1.subVectors( v2, v1 );
elem.faceNormal = new Vector3()
.crossVectors( _tempVec0, _tempVec1 )
.normalize();
}
let elemNormals = elem.normals;
if ( elemNormals.length === 4 ) {
quadArray[ 0 ] = elemNormals[ 0 ];
quadArray[ 1 ] = elemNormals[ 1 ];
quadArray[ 2 ] = elemNormals[ 2 ];
quadArray[ 3 ] = elemNormals[ 0 ];
quadArray[ 4 ] = elemNormals[ 2 ];
quadArray[ 5 ] = elemNormals[ 3 ];
elemNormals = quadArray;
}
for ( let j = 0, l = elemNormals.length; j < l; j ++ ) {
// use face normal if a vertex normal is not provided
let n = elem.faceNormal;
if ( elemNormals[ j ] ) {
n = elemNormals[ j ].norm;
}
const index = offset + j * 3;
normals[ index + 0 ] = n.x;
normals[ index + 1 ] = n.y;
normals[ index + 2 ] = n.z;
}
}
if ( prevMaterial !== elem.colorCode ) {
if ( prevMaterial !== null ) {
bufferGeometry.addGroup( index0, numGroupVerts, materials.length - 1 );
}
const material = elem.material;
if ( material !== null ) {
if ( elementSize === 3 ) {
materials.push( material );
} else if ( elementSize === 2 ) {
if ( isConditionalSegments ) {
const edgeMaterial = loader.edgeMaterialCache.get( material );
materials.push( loader.conditionalEdgeMaterialCache.get( edgeMaterial ) );
} else {
materials.push( loader.edgeMaterialCache.get( material ) );
}
}
} else {
// If a material has not been made available yet then keep the color code string in the material array
// to save the spot for the material once a parent scopes materials are being applied to the object.
materials.push( elem.colorCode );
}
prevMaterial = elem.colorCode;
index0 = offset / 3;
numGroupVerts = vertices.length;
} else {
numGroupVerts += vertices.length;
}
offset += 3 * vertices.length;
}
if ( numGroupVerts > 0 ) {
bufferGeometry.addGroup( index0, Infinity, materials.length - 1 );
}
bufferGeometry.setAttribute( 'position', new BufferAttribute( positions, 3 ) );
if ( normals !== null ) {
bufferGeometry.setAttribute( 'normal', new BufferAttribute( normals, 3 ) );
}
let object3d = null;
if ( elementSize === 2 ) {
if ( isConditionalSegments ) {
object3d = new ConditionalLineSegments( bufferGeometry, materials.length === 1 ? materials[ 0 ] : materials );
} else {
object3d = new LineSegments( bufferGeometry, materials.length === 1 ? materials[ 0 ] : materials );
}
} else if ( elementSize === 3 ) {
object3d = new Mesh( bufferGeometry, materials.length === 1 ? materials[ 0 ] : materials );
}
if ( isConditionalSegments ) {
object3d.isConditionalLine = true;
const controlArray0 = new Float32Array( elements.length * 3 * 2 );
const controlArray1 = new Float32Array( elements.length * 3 * 2 );
const directionArray = new Float32Array( elements.length * 3 * 2 );
for ( let i = 0, l = elements.length; i < l; i ++ ) {
const os = elements[ i ];
const vertices = os.vertices;
const controlPoints = os.controlPoints;
const c0 = controlPoints[ 0 ];
const c1 = controlPoints[ 1 ];
const v0 = vertices[ 0 ];
const v1 = vertices[ 1 ];
const index = i * 3 * 2;
controlArray0[ index + 0 ] = c0.x;
controlArray0[ index + 1 ] = c0.y;
controlArray0[ index + 2 ] = c0.z;
controlArray0[ index + 3 ] = c0.x;
controlArray0[ index + 4 ] = c0.y;
controlArray0[ index + 5 ] = c0.z;
controlArray1[ index + 0 ] = c1.x;
controlArray1[ index + 1 ] = c1.y;
controlArray1[ index + 2 ] = c1.z;
controlArray1[ index + 3 ] = c1.x;
controlArray1[ index + 4 ] = c1.y;
controlArray1[ index + 5 ] = c1.z;
directionArray[ index + 0 ] = v1.x - v0.x;
directionArray[ index + 1 ] = v1.y - v0.y;
directionArray[ index + 2 ] = v1.z - v0.z;
directionArray[ index + 3 ] = v1.x - v0.x;
directionArray[ index + 4 ] = v1.y - v0.y;
directionArray[ index + 5 ] = v1.z - v0.z;
}
bufferGeometry.setAttribute( 'control0', new BufferAttribute( controlArray0, 3, false ) );
bufferGeometry.setAttribute( 'control1', new BufferAttribute( controlArray1, 3, false ) );
bufferGeometry.setAttribute( 'direction', new BufferAttribute( directionArray, 3, false ) );
}
return object3d;
}
//
class LDrawLoader extends Loader {
constructor( manager ) {
super( manager );
// Array of THREE.Material
this.materials = [];
this.materialLibrary = {};
this.edgeMaterialCache = new WeakMap();
this.conditionalEdgeMaterialCache = new WeakMap();
// This also allows to handle the embedded text files ("0 FILE" lines)
this.partsCache = new LDrawPartsGeometryCache( this );
// This object is a map from file names to paths. It agilizes the paths search. If it is not set then files will be searched by trial and error.
this.fileMap = {};
// Initializes the materials library with default materials
this.setMaterials( [] );
// If this flag is set to true the vertex normals will be smoothed.
this.smoothNormals = true;
// The path to load parts from the LDraw parts library from.
this.partsLibraryPath = '';
// Material assigned to not available colors for meshes and edges
this.missingColorMaterial = new MeshStandardMaterial( { name: Loader.DEFAULT_MATERIAL_NAME, color: 0xFF00FF, roughness: 0.3, metalness: 0 } );
this.missingEdgeColorMaterial = new LineBasicMaterial( { name: Loader.DEFAULT_MATERIAL_NAME, color: 0xFF00FF } );
this.missingConditionalEdgeColorMaterial = new LDrawConditionalLineMaterial( { name: Loader.DEFAULT_MATERIAL_NAME, fog: true, color: 0xFF00FF } );
this.edgeMaterialCache.set( this.missingColorMaterial, this.missingEdgeColorMaterial );
this.conditionalEdgeMaterialCache.set( this.missingEdgeColorMaterial, this.missingConditionalEdgeColorMaterial );
}
setPartsLibraryPath( path ) {
this.partsLibraryPath = path;
return this;
}
async preloadMaterials( url ) {
const fileLoader = new FileLoader( this.manager );
fileLoader.setPath( this.path );
fileLoader.setRequestHeader( this.requestHeader );
fileLoader.setWithCredentials( this.withCredentials );
const text = await fileLoader.loadAsync( url );
const colorLineRegex = /^0 !COLOUR/;
const lines = text.split( /[\n\r]/g );
const materials = [];
for ( let i = 0, l = lines.length; i < l; i ++ ) {
const line = lines[ i ];
if ( colorLineRegex.test( line ) ) {
const directive = line.replace( colorLineRegex, '' );
const material = this.parseColorMetaDirective( new LineParser( directive ) );
materials.push( material );
}
}
this.setMaterials( materials );
}
load( url, onLoad, onProgress, onError ) {
const fileLoader = new FileLoader( this.manager );
fileLoader.setPath( this.path );
fileLoader.setRequestHeader( this.requestHeader );
fileLoader.setWithCredentials( this.withCredentials );
fileLoader.load( url, text => {
this.partsCache
.parseModel( text, this.materialLibrary )
.then( group => {
this.applyMaterialsToMesh( group, MAIN_COLOUR_CODE, this.materialLibrary, true );
this.computeBuildingSteps( group );
group.userData.fileName = url;
onLoad( group );
} )
.catch( onError );
}, onProgress, onError );
}
parse( text, onLoad ) {
this.partsCache
.parseModel( text, this.materialLibrary )
.then( group => {
this.applyMaterialsToMesh( group, MAIN_COLOUR_CODE, this.materialLibrary, true );
this.computeBuildingSteps( group );
group.userData.fileName = '';
onLoad( group );
} );
}
setMaterials( materials ) {
this.materialLibrary = {};
this.materials = [];
for ( let i = 0, l = materials.length; i < l; i ++ ) {
this.addMaterial( materials[ i ] );
}
// Add default main triangle and line edge materials (used in pieces that can be colored with a main color)
this.addMaterial( this.parseColorMetaDirective( new LineParser( 'Main_Colour CODE 16 VALUE #FF8080 EDGE #333333' ) ) );
this.addMaterial( this.parseColorMetaDirective( new LineParser( 'Edge_Colour CODE 24 VALUE #A0A0A0 EDGE #333333' ) ) );
return this;
}
setFileMap( fileMap ) {
this.fileMap = fileMap;
return this;
}
addMaterial( material ) {
// Adds a material to the material library which is on top of the parse scopes stack. And also to the materials array
const matLib = this.materialLibrary;
if ( ! matLib[ material.userData.code ] ) {
this.materials.push( material );
matLib[ material.userData.code ] = material;
}
return this;
}
getMaterial( colorCode ) {
if ( colorCode.startsWith( '0x2' ) ) {
// Special 'direct' material value (RGB color)
const color = colorCode.substring( 3 );
return this.parseColorMetaDirective( new LineParser( 'Direct_Color_' + color + ' CODE -1 VALUE #' + color + ' EDGE #' + color + '' ) );
}
return this.materialLibrary[ colorCode ] || null;
}
// Applies the appropriate materials to a prebuilt hierarchy of geometry. Assumes that color codes are present
// in the material array if they need to be filled in.
applyMaterialsToMesh( group, parentColorCode, materialHierarchy, finalMaterialPass = false ) {
// find any missing materials as indicated by a color code string and replace it with a material from the current material lib
const loader = this;
const parentIsPassthrough = parentColorCode === MAIN_COLOUR_CODE;
group.traverse( c => {
if ( c.isMesh || c.isLineSegments ) {
if ( Array.isArray( c.material ) ) {
for ( let i = 0, l = c.material.length; i < l; i ++ ) {
if ( ! c.material[ i ].isMaterial ) {
c.material[ i ] = getMaterial( c, c.material[ i ] );
}
}
} else if ( ! c.material.isMaterial ) {
c.material = getMaterial( c, c.material );
}
}
} );
// Returns the appropriate material for the object (line or face) given color code. If the code is "pass through"
// (24 for lines, 16 for edges) then the pass through color code is used. If that is also pass through then it's
// simply returned for the subsequent material application.
function getMaterial( c, colorCode ) {
// if our parent is a passthrough color code and we don't have the current material color available then
// return early.
if ( parentIsPassthrough && ! ( colorCode in materialHierarchy ) && ! finalMaterialPass ) {
return colorCode;
}
const forEdge = c.isLineSegments || c.isConditionalLine;
const isPassthrough = ! forEdge && colorCode === MAIN_COLOUR_CODE || forEdge && colorCode === MAIN_EDGE_COLOUR_CODE;
if ( isPassthrough ) {
colorCode = parentColorCode;
}
let material = null;
if ( colorCode in materialHierarchy ) {
material = materialHierarchy[ colorCode ];
} else if ( finalMaterialPass ) {
// see if we can get the final material from from the "getMaterial" function which will attempt to
// parse the "direct" colors
material = loader.getMaterial( colorCode );
if ( material === null ) {
// otherwise throw a warning if this is final opportunity to set the material
console.warn( `LDrawLoader: Material properties for code ${ colorCode } not available.` );
// And return the 'missing color' material
material = loader.missingColorMaterial;
}
} else {
return colorCode;
}
if ( c.isLineSegments ) {
material = loader.edgeMaterialCache.get( material );
if ( c.isConditionalLine ) {
material = loader.conditionalEdgeMaterialCache.get( material );
}
}
return material;
}
}
getMainMaterial() {
return this.getMaterial( MAIN_COLOUR_CODE );
}
getMainEdgeMaterial() {
const mat = this.getMaterial( MAIN_EDGE_COLOUR_CODE );
return mat ? this.edgeMaterialCache.get( mat ) : null;
}
parseColorMetaDirective( lineParser ) {
// Parses a color definition and returns a THREE.Material
let code = null;
// Triangle and line colors
let fillColor = '#FF00FF';
let edgeColor = '#FF00FF';
// Transparency
let alpha = 1;
let isTransparent = false;
// Self-illumination:
let luminance = 0;
let finishType = FINISH_TYPE_DEFAULT;
let edgeMaterial = null;
const name = lineParser.getToken();
if ( ! name ) {
throw new Error( 'LDrawLoader: Material name was expected after "!COLOUR tag' + lineParser.getLineNumberString() + '.' );
}
// Parse tag tokens and their parameters
let token = null;
while ( true ) {
token = lineParser.getToken();
if ( ! token ) {
break;
}
if ( ! parseLuminance( token ) ) {
switch ( token.toUpperCase() ) {
case 'CODE':
code = lineParser.getToken();
break;
case 'VALUE':
fillColor = lineParser.getToken();
if ( fillColor.startsWith( '0x' ) ) {
fillColor = '#' + fillColor.substring( 2 );
} else if ( ! fillColor.startsWith( '#' ) ) {
throw new Error( 'LDrawLoader: Invalid color while parsing material' + lineParser.getLineNumberString() + '.' );
}
break;
case 'EDGE':
edgeColor = lineParser.getToken();
if ( edgeColor.startsWith( '0x' ) ) {
edgeColor = '#' + edgeColor.substring( 2 );
} else if ( ! edgeColor.startsWith( '#' ) ) {
// Try to see if edge color is a color code
edgeMaterial = this.getMaterial( edgeColor );
if ( ! edgeMaterial ) {
throw new Error( 'LDrawLoader: Invalid edge color while parsing material' + lineParser.getLineNumberString() + '.' );
}
// Get the edge material for this triangle material
edgeMaterial = this.edgeMaterialCache.get( edgeMaterial );
}
break;
case 'ALPHA':
alpha = parseInt( lineParser.getToken() );
if ( isNaN( alpha ) ) {
throw new Error( 'LDrawLoader: Invalid alpha value in material definition' + lineParser.getLineNumberString() + '.' );
}
alpha = Math.max( 0, Math.min( 1, alpha / 255 ) );
if ( alpha < 1 ) {
isTransparent = true;
}
break;
case 'LUMINANCE':
if ( ! parseLuminance( lineParser.getToken() ) ) {
throw new Error( 'LDrawLoader: Invalid luminance value in material definition' + LineParser.getLineNumberString() + '.' );
}
break;
case 'CHROME':
finishType = FINISH_TYPE_CHROME;
break;
case 'PEARLESCENT':
finishType = FINISH_TYPE_PEARLESCENT;
break;
case 'RUBBER':
finishType = FINISH_TYPE_RUBBER;
break;
case 'MATTE_METALLIC':
finishType = FINISH_TYPE_MATTE_METALLIC;
break;
case 'METAL':
finishType = FINISH_TYPE_METAL;
break;
case 'MATERIAL':
// Not implemented
lineParser.setToEnd();
break;
default:
throw new Error( 'LDrawLoader: Unknown token "' + token + '" while parsing material' + lineParser.getLineNumberString() + '.' );
}
}
}
let material = null;
switch ( finishType ) {
case FINISH_TYPE_DEFAULT:
material = new MeshStandardMaterial( { roughness: 0.3, metalness: 0 } );
break;
case FINISH_TYPE_PEARLESCENT:
// Try to imitate pearlescency by making the surface glossy
material = new MeshStandardMaterial( { roughness: 0.3, metalness: 0.25 } );
break;
case FINISH_TYPE_CHROME:
// Mirror finish surface
material = new MeshStandardMaterial( { roughness: 0, metalness: 1 } );
break;
case FINISH_TYPE_RUBBER:
// Rubber finish
material = new MeshStandardMaterial( { roughness: 0.9, metalness: 0 } );
break;
case FINISH_TYPE_MATTE_METALLIC:
// Brushed metal finish
material = new MeshStandardMaterial( { roughness: 0.8, metalness: 0.4 } );
break;
case FINISH_TYPE_METAL:
// Average metal finish
material = new MeshStandardMaterial( { roughness: 0.2, metalness: 0.85 } );
break;
default:
// Should not happen
break;
}
material.color.setStyle( fillColor, COLOR_SPACE_LDRAW );
material.transparent = isTransparent;
material.premultipliedAlpha = true;
material.opacity = alpha;
material.depthWrite = ! isTransparent;
material.polygonOffset = true;
material.polygonOffsetFactor = 1;
if ( luminance !== 0 ) {
material.emissive.setStyle( fillColor, COLOR_SPACE_LDRAW ).multiplyScalar( luminance );
}
if ( ! edgeMaterial ) {
// This is the material used for edges
edgeMaterial = new LineBasicMaterial( {
color: new Color().setStyle( edgeColor, COLOR_SPACE_LDRAW ),
transparent: isTransparent,
opacity: alpha,
depthWrite: ! isTransparent
} );
edgeMaterial.color;
edgeMaterial.userData.code = code;
edgeMaterial.name = name + ' - Edge';
// This is the material used for conditional edges
const conditionalEdgeMaterial = new LDrawConditionalLineMaterial( {
fog: true,
transparent: isTransparent,
depthWrite: ! isTransparent,
color: new Color().setStyle( edgeColor, COLOR_SPACE_LDRAW ),
opacity: alpha,
} );
conditionalEdgeMaterial.userData.code = code;
conditionalEdgeMaterial.name = name + ' - Conditional Edge';
this.conditionalEdgeMaterialCache.set( edgeMaterial, conditionalEdgeMaterial );
}
material.userData.code = code;
material.name = name;
this.edgeMaterialCache.set( material, edgeMaterial );
this.addMaterial( material );
return material;
function parseLuminance( token ) {
// Returns success
let lum;
if ( token.startsWith( 'LUMINANCE' ) ) {
lum = parseInt( token.substring( 9 ) );
} else {
lum = parseInt( token );
}
if ( isNaN( lum ) ) {
return false;
}
luminance = Math.max( 0, Math.min( 1, lum / 255 ) );
return true;
}
}
computeBuildingSteps( model ) {
// Sets userdata.buildingStep number in Group objects and userData.numBuildingSteps number in the root Group object.
let stepNumber = 0;
model.traverse( c => {
if ( c.isGroup ) {
if ( c.userData.startingBuildingStep ) {
stepNumber ++;
}
c.userData.buildingStep = stepNumber;
}
} );
model.userData.numBuildingSteps = stepNumber + 1;
}
}
export { LDrawLoader };