node-ejs-renderer/node_modules/three/examples/jsm/loaders/FBXLoader.js

4315 lines
99 KiB
JavaScript
Raw Permalink Normal View History

2024-06-09 13:55:01 -04:00
import {
AmbientLight,
AnimationClip,
Bone,
BufferGeometry,
ClampToEdgeWrapping,
Color,
DirectionalLight,
EquirectangularReflectionMapping,
Euler,
FileLoader,
Float32BufferAttribute,
Group,
Line,
LineBasicMaterial,
Loader,
LoaderUtils,
MathUtils,
Matrix3,
Matrix4,
Mesh,
MeshLambertMaterial,
MeshPhongMaterial,
NumberKeyframeTrack,
Object3D,
OrthographicCamera,
PerspectiveCamera,
PointLight,
PropertyBinding,
Quaternion,
QuaternionKeyframeTrack,
RepeatWrapping,
Skeleton,
SkinnedMesh,
SpotLight,
Texture,
TextureLoader,
Uint16BufferAttribute,
Vector2,
Vector3,
Vector4,
VectorKeyframeTrack,
SRGBColorSpace,
ShapeUtils
} from 'three';
import * as fflate from '../libs/fflate.module.js';
import { NURBSCurve } from '../curves/NURBSCurve.js';
/**
* Loader loads FBX file and generates Group representing FBX scene.
* Requires FBX file to be >= 7.0 and in ASCII or >= 6400 in Binary format
* Versions lower than this may load but will probably have errors
*
* Needs Support:
* Morph normals / blend shape normals
*
* FBX format references:
* https://help.autodesk.com/view/FBX/2017/ENU/?guid=__cpp_ref_index_html (C++ SDK reference)
*
* Binary format specification:
* https://code.blender.org/2013/08/fbx-binary-file-format-specification/
*/
let fbxTree;
let connections;
let sceneGraph;
class FBXLoader extends Loader {
constructor( manager ) {
super( manager );
}
load( url, onLoad, onProgress, onError ) {
const scope = this;
const path = ( scope.path === '' ) ? LoaderUtils.extractUrlBase( url ) : scope.path;
const loader = new FileLoader( this.manager );
loader.setPath( scope.path );
loader.setResponseType( 'arraybuffer' );
loader.setRequestHeader( scope.requestHeader );
loader.setWithCredentials( scope.withCredentials );
loader.load( url, function ( buffer ) {
try {
onLoad( scope.parse( buffer, path ) );
} catch ( e ) {
if ( onError ) {
onError( e );
} else {
console.error( e );
}
scope.manager.itemError( url );
}
}, onProgress, onError );
}
parse( FBXBuffer, path ) {
if ( isFbxFormatBinary( FBXBuffer ) ) {
fbxTree = new BinaryParser().parse( FBXBuffer );
} else {
const FBXText = convertArrayBufferToString( FBXBuffer );
if ( ! isFbxFormatASCII( FBXText ) ) {
throw new Error( 'THREE.FBXLoader: Unknown format.' );
}
if ( getFbxVersion( FBXText ) < 7000 ) {
throw new Error( 'THREE.FBXLoader: FBX version not supported, FileVersion: ' + getFbxVersion( FBXText ) );
}
fbxTree = new TextParser().parse( FBXText );
}
// console.log( fbxTree );
const textureLoader = new TextureLoader( this.manager ).setPath( this.resourcePath || path ).setCrossOrigin( this.crossOrigin );
return new FBXTreeParser( textureLoader, this.manager ).parse( fbxTree );
}
}
// Parse the FBXTree object returned by the BinaryParser or TextParser and return a Group
class FBXTreeParser {
constructor( textureLoader, manager ) {
this.textureLoader = textureLoader;
this.manager = manager;
}
parse() {
connections = this.parseConnections();
const images = this.parseImages();
const textures = this.parseTextures( images );
const materials = this.parseMaterials( textures );
const deformers = this.parseDeformers();
const geometryMap = new GeometryParser().parse( deformers );
this.parseScene( deformers, geometryMap, materials );
return sceneGraph;
}
// Parses FBXTree.Connections which holds parent-child connections between objects (e.g. material -> texture, model->geometry )
// and details the connection type
parseConnections() {
const connectionMap = new Map();
if ( 'Connections' in fbxTree ) {
const rawConnections = fbxTree.Connections.connections;
rawConnections.forEach( function ( rawConnection ) {
const fromID = rawConnection[ 0 ];
const toID = rawConnection[ 1 ];
const relationship = rawConnection[ 2 ];
if ( ! connectionMap.has( fromID ) ) {
connectionMap.set( fromID, {
parents: [],
children: []
} );
}
const parentRelationship = { ID: toID, relationship: relationship };
connectionMap.get( fromID ).parents.push( parentRelationship );
if ( ! connectionMap.has( toID ) ) {
connectionMap.set( toID, {
parents: [],
children: []
} );
}
const childRelationship = { ID: fromID, relationship: relationship };
connectionMap.get( toID ).children.push( childRelationship );
} );
}
return connectionMap;
}
// Parse FBXTree.Objects.Video for embedded image data
// These images are connected to textures in FBXTree.Objects.Textures
// via FBXTree.Connections.
parseImages() {
const images = {};
const blobs = {};
if ( 'Video' in fbxTree.Objects ) {
const videoNodes = fbxTree.Objects.Video;
for ( const nodeID in videoNodes ) {
const videoNode = videoNodes[ nodeID ];
const id = parseInt( nodeID );
images[ id ] = videoNode.RelativeFilename || videoNode.Filename;
// raw image data is in videoNode.Content
if ( 'Content' in videoNode ) {
const arrayBufferContent = ( videoNode.Content instanceof ArrayBuffer ) && ( videoNode.Content.byteLength > 0 );
const base64Content = ( typeof videoNode.Content === 'string' ) && ( videoNode.Content !== '' );
if ( arrayBufferContent || base64Content ) {
const image = this.parseImage( videoNodes[ nodeID ] );
blobs[ videoNode.RelativeFilename || videoNode.Filename ] = image;
}
}
}
}
for ( const id in images ) {
const filename = images[ id ];
if ( blobs[ filename ] !== undefined ) images[ id ] = blobs[ filename ];
else images[ id ] = images[ id ].split( '\\' ).pop();
}
return images;
}
// Parse embedded image data in FBXTree.Video.Content
parseImage( videoNode ) {
const content = videoNode.Content;
const fileName = videoNode.RelativeFilename || videoNode.Filename;
const extension = fileName.slice( fileName.lastIndexOf( '.' ) + 1 ).toLowerCase();
let type;
switch ( extension ) {
case 'bmp':
type = 'image/bmp';
break;
case 'jpg':
case 'jpeg':
type = 'image/jpeg';
break;
case 'png':
type = 'image/png';
break;
case 'tif':
type = 'image/tiff';
break;
case 'tga':
if ( this.manager.getHandler( '.tga' ) === null ) {
console.warn( 'FBXLoader: TGA loader not found, skipping ', fileName );
}
type = 'image/tga';
break;
default:
console.warn( 'FBXLoader: Image type "' + extension + '" is not supported.' );
return;
}
if ( typeof content === 'string' ) { // ASCII format
return 'data:' + type + ';base64,' + content;
} else { // Binary Format
const array = new Uint8Array( content );
return window.URL.createObjectURL( new Blob( [ array ], { type: type } ) );
}
}
// Parse nodes in FBXTree.Objects.Texture
// These contain details such as UV scaling, cropping, rotation etc and are connected
// to images in FBXTree.Objects.Video
parseTextures( images ) {
const textureMap = new Map();
if ( 'Texture' in fbxTree.Objects ) {
const textureNodes = fbxTree.Objects.Texture;
for ( const nodeID in textureNodes ) {
const texture = this.parseTexture( textureNodes[ nodeID ], images );
textureMap.set( parseInt( nodeID ), texture );
}
}
return textureMap;
}
// Parse individual node in FBXTree.Objects.Texture
parseTexture( textureNode, images ) {
const texture = this.loadTexture( textureNode, images );
texture.ID = textureNode.id;
texture.name = textureNode.attrName;
const wrapModeU = textureNode.WrapModeU;
const wrapModeV = textureNode.WrapModeV;
const valueU = wrapModeU !== undefined ? wrapModeU.value : 0;
const valueV = wrapModeV !== undefined ? wrapModeV.value : 0;
// http://download.autodesk.com/us/fbx/SDKdocs/FBX_SDK_Help/files/fbxsdkref/class_k_fbx_texture.html#889640e63e2e681259ea81061b85143a
// 0: repeat(default), 1: clamp
texture.wrapS = valueU === 0 ? RepeatWrapping : ClampToEdgeWrapping;
texture.wrapT = valueV === 0 ? RepeatWrapping : ClampToEdgeWrapping;
if ( 'Scaling' in textureNode ) {
const values = textureNode.Scaling.value;
texture.repeat.x = values[ 0 ];
texture.repeat.y = values[ 1 ];
}
if ( 'Translation' in textureNode ) {
const values = textureNode.Translation.value;
texture.offset.x = values[ 0 ];
texture.offset.y = values[ 1 ];
}
return texture;
}
// load a texture specified as a blob or data URI, or via an external URL using TextureLoader
loadTexture( textureNode, images ) {
let fileName;
const currentPath = this.textureLoader.path;
const children = connections.get( textureNode.id ).children;
if ( children !== undefined && children.length > 0 && images[ children[ 0 ].ID ] !== undefined ) {
fileName = images[ children[ 0 ].ID ];
if ( fileName.indexOf( 'blob:' ) === 0 || fileName.indexOf( 'data:' ) === 0 ) {
this.textureLoader.setPath( undefined );
}
}
let texture;
const extension = textureNode.FileName.slice( - 3 ).toLowerCase();
if ( extension === 'tga' ) {
const loader = this.manager.getHandler( '.tga' );
if ( loader === null ) {
console.warn( 'FBXLoader: TGA loader not found, creating placeholder texture for', textureNode.RelativeFilename );
texture = new Texture();
} else {
loader.setPath( this.textureLoader.path );
texture = loader.load( fileName );
}
} else if ( extension === 'dds' ) {
const loader = this.manager.getHandler( '.dds' );
if ( loader === null ) {
console.warn( 'FBXLoader: DDS loader not found, creating placeholder texture for', textureNode.RelativeFilename );
texture = new Texture();
} else {
loader.setPath( this.textureLoader.path );
texture = loader.load( fileName );
}
} else if ( extension === 'psd' ) {
console.warn( 'FBXLoader: PSD textures are not supported, creating placeholder texture for', textureNode.RelativeFilename );
texture = new Texture();
} else {
texture = this.textureLoader.load( fileName );
}
this.textureLoader.setPath( currentPath );
return texture;
}
// Parse nodes in FBXTree.Objects.Material
parseMaterials( textureMap ) {
const materialMap = new Map();
if ( 'Material' in fbxTree.Objects ) {
const materialNodes = fbxTree.Objects.Material;
for ( const nodeID in materialNodes ) {
const material = this.parseMaterial( materialNodes[ nodeID ], textureMap );
if ( material !== null ) materialMap.set( parseInt( nodeID ), material );
}
}
return materialMap;
}
// Parse single node in FBXTree.Objects.Material
// Materials are connected to texture maps in FBXTree.Objects.Textures
// FBX format currently only supports Lambert and Phong shading models
parseMaterial( materialNode, textureMap ) {
const ID = materialNode.id;
const name = materialNode.attrName;
let type = materialNode.ShadingModel;
// Case where FBX wraps shading model in property object.
if ( typeof type === 'object' ) {
type = type.value;
}
// Ignore unused materials which don't have any connections.
if ( ! connections.has( ID ) ) return null;
const parameters = this.parseParameters( materialNode, textureMap, ID );
let material;
switch ( type.toLowerCase() ) {
case 'phong':
material = new MeshPhongMaterial();
break;
case 'lambert':
material = new MeshLambertMaterial();
break;
default:
console.warn( 'THREE.FBXLoader: unknown material type "%s". Defaulting to MeshPhongMaterial.', type );
material = new MeshPhongMaterial();
break;
}
material.setValues( parameters );
material.name = name;
return material;
}
// Parse FBX material and return parameters suitable for a three.js material
// Also parse the texture map and return any textures associated with the material
parseParameters( materialNode, textureMap, ID ) {
const parameters = {};
if ( materialNode.BumpFactor ) {
parameters.bumpScale = materialNode.BumpFactor.value;
}
if ( materialNode.Diffuse ) {
parameters.color = new Color().fromArray( materialNode.Diffuse.value ).convertSRGBToLinear();
} else if ( materialNode.DiffuseColor && ( materialNode.DiffuseColor.type === 'Color' || materialNode.DiffuseColor.type === 'ColorRGB' ) ) {
// The blender exporter exports diffuse here instead of in materialNode.Diffuse
parameters.color = new Color().fromArray( materialNode.DiffuseColor.value ).convertSRGBToLinear();
}
if ( materialNode.DisplacementFactor ) {
parameters.displacementScale = materialNode.DisplacementFactor.value;
}
if ( materialNode.Emissive ) {
parameters.emissive = new Color().fromArray( materialNode.Emissive.value ).convertSRGBToLinear();
} else if ( materialNode.EmissiveColor && ( materialNode.EmissiveColor.type === 'Color' || materialNode.EmissiveColor.type === 'ColorRGB' ) ) {
// The blender exporter exports emissive color here instead of in materialNode.Emissive
parameters.emissive = new Color().fromArray( materialNode.EmissiveColor.value ).convertSRGBToLinear();
}
if ( materialNode.EmissiveFactor ) {
parameters.emissiveIntensity = parseFloat( materialNode.EmissiveFactor.value );
}
if ( materialNode.Opacity ) {
parameters.opacity = parseFloat( materialNode.Opacity.value );
}
if ( parameters.opacity < 1.0 ) {
parameters.transparent = true;
}
if ( materialNode.ReflectionFactor ) {
parameters.reflectivity = materialNode.ReflectionFactor.value;
}
if ( materialNode.Shininess ) {
parameters.shininess = materialNode.Shininess.value;
}
if ( materialNode.Specular ) {
parameters.specular = new Color().fromArray( materialNode.Specular.value ).convertSRGBToLinear();
} else if ( materialNode.SpecularColor && materialNode.SpecularColor.type === 'Color' ) {
// The blender exporter exports specular color here instead of in materialNode.Specular
parameters.specular = new Color().fromArray( materialNode.SpecularColor.value ).convertSRGBToLinear();
}
const scope = this;
connections.get( ID ).children.forEach( function ( child ) {
const type = child.relationship;
switch ( type ) {
case 'Bump':
parameters.bumpMap = scope.getTexture( textureMap, child.ID );
break;
case 'Maya|TEX_ao_map':
parameters.aoMap = scope.getTexture( textureMap, child.ID );
break;
case 'DiffuseColor':
case 'Maya|TEX_color_map':
parameters.map = scope.getTexture( textureMap, child.ID );
if ( parameters.map !== undefined ) {
parameters.map.colorSpace = SRGBColorSpace;
}
break;
case 'DisplacementColor':
parameters.displacementMap = scope.getTexture( textureMap, child.ID );
break;
case 'EmissiveColor':
parameters.emissiveMap = scope.getTexture( textureMap, child.ID );
if ( parameters.emissiveMap !== undefined ) {
parameters.emissiveMap.colorSpace = SRGBColorSpace;
}
break;
case 'NormalMap':
case 'Maya|TEX_normal_map':
parameters.normalMap = scope.getTexture( textureMap, child.ID );
break;
case 'ReflectionColor':
parameters.envMap = scope.getTexture( textureMap, child.ID );
if ( parameters.envMap !== undefined ) {
parameters.envMap.mapping = EquirectangularReflectionMapping;
parameters.envMap.colorSpace = SRGBColorSpace;
}
break;
case 'SpecularColor':
parameters.specularMap = scope.getTexture( textureMap, child.ID );
if ( parameters.specularMap !== undefined ) {
parameters.specularMap.colorSpace = SRGBColorSpace;
}
break;
case 'TransparentColor':
case 'TransparencyFactor':
parameters.alphaMap = scope.getTexture( textureMap, child.ID );
parameters.transparent = true;
break;
case 'AmbientColor':
case 'ShininessExponent': // AKA glossiness map
case 'SpecularFactor': // AKA specularLevel
case 'VectorDisplacementColor': // NOTE: Seems to be a copy of DisplacementColor
default:
console.warn( 'THREE.FBXLoader: %s map is not supported in three.js, skipping texture.', type );
break;
}
} );
return parameters;
}
// get a texture from the textureMap for use by a material.
getTexture( textureMap, id ) {
// if the texture is a layered texture, just use the first layer and issue a warning
if ( 'LayeredTexture' in fbxTree.Objects && id in fbxTree.Objects.LayeredTexture ) {
console.warn( 'THREE.FBXLoader: layered textures are not supported in three.js. Discarding all but first layer.' );
id = connections.get( id ).children[ 0 ].ID;
}
return textureMap.get( id );
}
// Parse nodes in FBXTree.Objects.Deformer
// Deformer node can contain skinning or Vertex Cache animation data, however only skinning is supported here
// Generates map of Skeleton-like objects for use later when generating and binding skeletons.
parseDeformers() {
const skeletons = {};
const morphTargets = {};
if ( 'Deformer' in fbxTree.Objects ) {
const DeformerNodes = fbxTree.Objects.Deformer;
for ( const nodeID in DeformerNodes ) {
const deformerNode = DeformerNodes[ nodeID ];
const relationships = connections.get( parseInt( nodeID ) );
if ( deformerNode.attrType === 'Skin' ) {
const skeleton = this.parseSkeleton( relationships, DeformerNodes );
skeleton.ID = nodeID;
if ( relationships.parents.length > 1 ) console.warn( 'THREE.FBXLoader: skeleton attached to more than one geometry is not supported.' );
skeleton.geometryID = relationships.parents[ 0 ].ID;
skeletons[ nodeID ] = skeleton;
} else if ( deformerNode.attrType === 'BlendShape' ) {
const morphTarget = {
id: nodeID,
};
morphTarget.rawTargets = this.parseMorphTargets( relationships, DeformerNodes );
morphTarget.id = nodeID;
if ( relationships.parents.length > 1 ) console.warn( 'THREE.FBXLoader: morph target attached to more than one geometry is not supported.' );
morphTargets[ nodeID ] = morphTarget;
}
}
}
return {
skeletons: skeletons,
morphTargets: morphTargets,
};
}
// Parse single nodes in FBXTree.Objects.Deformer
// The top level skeleton node has type 'Skin' and sub nodes have type 'Cluster'
// Each skin node represents a skeleton and each cluster node represents a bone
parseSkeleton( relationships, deformerNodes ) {
const rawBones = [];
relationships.children.forEach( function ( child ) {
const boneNode = deformerNodes[ child.ID ];
if ( boneNode.attrType !== 'Cluster' ) return;
const rawBone = {
ID: child.ID,
indices: [],
weights: [],
transformLink: new Matrix4().fromArray( boneNode.TransformLink.a ),
// transform: new Matrix4().fromArray( boneNode.Transform.a ),
// linkMode: boneNode.Mode,
};
if ( 'Indexes' in boneNode ) {
rawBone.indices = boneNode.Indexes.a;
rawBone.weights = boneNode.Weights.a;
}
rawBones.push( rawBone );
} );
return {
rawBones: rawBones,
bones: []
};
}
// The top level morph deformer node has type "BlendShape" and sub nodes have type "BlendShapeChannel"
parseMorphTargets( relationships, deformerNodes ) {
const rawMorphTargets = [];
for ( let i = 0; i < relationships.children.length; i ++ ) {
const child = relationships.children[ i ];
const morphTargetNode = deformerNodes[ child.ID ];
const rawMorphTarget = {
name: morphTargetNode.attrName,
initialWeight: morphTargetNode.DeformPercent,
id: morphTargetNode.id,
fullWeights: morphTargetNode.FullWeights.a
};
if ( morphTargetNode.attrType !== 'BlendShapeChannel' ) return;
rawMorphTarget.geoID = connections.get( parseInt( child.ID ) ).children.filter( function ( child ) {
return child.relationship === undefined;
} )[ 0 ].ID;
rawMorphTargets.push( rawMorphTarget );
}
return rawMorphTargets;
}
// create the main Group() to be returned by the loader
parseScene( deformers, geometryMap, materialMap ) {
sceneGraph = new Group();
const modelMap = this.parseModels( deformers.skeletons, geometryMap, materialMap );
const modelNodes = fbxTree.Objects.Model;
const scope = this;
modelMap.forEach( function ( model ) {
const modelNode = modelNodes[ model.ID ];
scope.setLookAtProperties( model, modelNode );
const parentConnections = connections.get( model.ID ).parents;
parentConnections.forEach( function ( connection ) {
const parent = modelMap.get( connection.ID );
if ( parent !== undefined ) parent.add( model );
} );
if ( model.parent === null ) {
sceneGraph.add( model );
}
} );
this.bindSkeleton( deformers.skeletons, geometryMap, modelMap );
this.addGlobalSceneSettings();
sceneGraph.traverse( function ( node ) {
if ( node.userData.transformData ) {
if ( node.parent ) {
node.userData.transformData.parentMatrix = node.parent.matrix;
node.userData.transformData.parentMatrixWorld = node.parent.matrixWorld;
}
const transform = generateTransform( node.userData.transformData );
node.applyMatrix4( transform );
node.updateWorldMatrix();
}
} );
const animations = new AnimationParser().parse();
// if all the models where already combined in a single group, just return that
if ( sceneGraph.children.length === 1 && sceneGraph.children[ 0 ].isGroup ) {
sceneGraph.children[ 0 ].animations = animations;
sceneGraph = sceneGraph.children[ 0 ];
}
sceneGraph.animations = animations;
}
// parse nodes in FBXTree.Objects.Model
parseModels( skeletons, geometryMap, materialMap ) {
const modelMap = new Map();
const modelNodes = fbxTree.Objects.Model;
for ( const nodeID in modelNodes ) {
const id = parseInt( nodeID );
const node = modelNodes[ nodeID ];
const relationships = connections.get( id );
let model = this.buildSkeleton( relationships, skeletons, id, node.attrName );
if ( ! model ) {
switch ( node.attrType ) {
case 'Camera':
model = this.createCamera( relationships );
break;
case 'Light':
model = this.createLight( relationships );
break;
case 'Mesh':
model = this.createMesh( relationships, geometryMap, materialMap );
break;
case 'NurbsCurve':
model = this.createCurve( relationships, geometryMap );
break;
case 'LimbNode':
case 'Root':
model = new Bone();
break;
case 'Null':
default:
model = new Group();
break;
}
model.name = node.attrName ? PropertyBinding.sanitizeNodeName( node.attrName ) : '';
model.userData.originalName = node.attrName;
model.ID = id;
}
this.getTransformData( model, node );
modelMap.set( id, model );
}
return modelMap;
}
buildSkeleton( relationships, skeletons, id, name ) {
let bone = null;
relationships.parents.forEach( function ( parent ) {
for ( const ID in skeletons ) {
const skeleton = skeletons[ ID ];
skeleton.rawBones.forEach( function ( rawBone, i ) {
if ( rawBone.ID === parent.ID ) {
const subBone = bone;
bone = new Bone();
bone.matrixWorld.copy( rawBone.transformLink );
// set name and id here - otherwise in cases where "subBone" is created it will not have a name / id
bone.name = name ? PropertyBinding.sanitizeNodeName( name ) : '';
bone.userData.originalName = name;
bone.ID = id;
skeleton.bones[ i ] = bone;
// In cases where a bone is shared between multiple meshes
// duplicate the bone here and and it as a child of the first bone
if ( subBone !== null ) {
bone.add( subBone );
}
}
} );
}
} );
return bone;
}
// create a PerspectiveCamera or OrthographicCamera
createCamera( relationships ) {
let model;
let cameraAttribute;
relationships.children.forEach( function ( child ) {
const attr = fbxTree.Objects.NodeAttribute[ child.ID ];
if ( attr !== undefined ) {
cameraAttribute = attr;
}
} );
if ( cameraAttribute === undefined ) {
model = new Object3D();
} else {
let type = 0;
if ( cameraAttribute.CameraProjectionType !== undefined && cameraAttribute.CameraProjectionType.value === 1 ) {
type = 1;
}
let nearClippingPlane = 1;
if ( cameraAttribute.NearPlane !== undefined ) {
nearClippingPlane = cameraAttribute.NearPlane.value / 1000;
}
let farClippingPlane = 1000;
if ( cameraAttribute.FarPlane !== undefined ) {
farClippingPlane = cameraAttribute.FarPlane.value / 1000;
}
let width = window.innerWidth;
let height = window.innerHeight;
if ( cameraAttribute.AspectWidth !== undefined && cameraAttribute.AspectHeight !== undefined ) {
width = cameraAttribute.AspectWidth.value;
height = cameraAttribute.AspectHeight.value;
}
const aspect = width / height;
let fov = 45;
if ( cameraAttribute.FieldOfView !== undefined ) {
fov = cameraAttribute.FieldOfView.value;
}
const focalLength = cameraAttribute.FocalLength ? cameraAttribute.FocalLength.value : null;
switch ( type ) {
case 0: // Perspective
model = new PerspectiveCamera( fov, aspect, nearClippingPlane, farClippingPlane );
if ( focalLength !== null ) model.setFocalLength( focalLength );
break;
case 1: // Orthographic
model = new OrthographicCamera( - width / 2, width / 2, height / 2, - height / 2, nearClippingPlane, farClippingPlane );
break;
default:
console.warn( 'THREE.FBXLoader: Unknown camera type ' + type + '.' );
model = new Object3D();
break;
}
}
return model;
}
// Create a DirectionalLight, PointLight or SpotLight
createLight( relationships ) {
let model;
let lightAttribute;
relationships.children.forEach( function ( child ) {
const attr = fbxTree.Objects.NodeAttribute[ child.ID ];
if ( attr !== undefined ) {
lightAttribute = attr;
}
} );
if ( lightAttribute === undefined ) {
model = new Object3D();
} else {
let type;
// LightType can be undefined for Point lights
if ( lightAttribute.LightType === undefined ) {
type = 0;
} else {
type = lightAttribute.LightType.value;
}
let color = 0xffffff;
if ( lightAttribute.Color !== undefined ) {
color = new Color().fromArray( lightAttribute.Color.value ).convertSRGBToLinear();
}
let intensity = ( lightAttribute.Intensity === undefined ) ? 1 : lightAttribute.Intensity.value / 100;
// light disabled
if ( lightAttribute.CastLightOnObject !== undefined && lightAttribute.CastLightOnObject.value === 0 ) {
intensity = 0;
}
let distance = 0;
if ( lightAttribute.FarAttenuationEnd !== undefined ) {
if ( lightAttribute.EnableFarAttenuation !== undefined && lightAttribute.EnableFarAttenuation.value === 0 ) {
distance = 0;
} else {
distance = lightAttribute.FarAttenuationEnd.value;
}
}
// TODO: could this be calculated linearly from FarAttenuationStart to FarAttenuationEnd?
const decay = 1;
switch ( type ) {
case 0: // Point
model = new PointLight( color, intensity, distance, decay );
break;
case 1: // Directional
model = new DirectionalLight( color, intensity );
break;
case 2: // Spot
let angle = Math.PI / 3;
if ( lightAttribute.InnerAngle !== undefined ) {
angle = MathUtils.degToRad( lightAttribute.InnerAngle.value );
}
let penumbra = 0;
if ( lightAttribute.OuterAngle !== undefined ) {
// TODO: this is not correct - FBX calculates outer and inner angle in degrees
// with OuterAngle > InnerAngle && OuterAngle <= Math.PI
// while three.js uses a penumbra between (0, 1) to attenuate the inner angle
penumbra = MathUtils.degToRad( lightAttribute.OuterAngle.value );
penumbra = Math.max( penumbra, 1 );
}
model = new SpotLight( color, intensity, distance, angle, penumbra, decay );
break;
default:
console.warn( 'THREE.FBXLoader: Unknown light type ' + lightAttribute.LightType.value + ', defaulting to a PointLight.' );
model = new PointLight( color, intensity );
break;
}
if ( lightAttribute.CastShadows !== undefined && lightAttribute.CastShadows.value === 1 ) {
model.castShadow = true;
}
}
return model;
}
createMesh( relationships, geometryMap, materialMap ) {
let model;
let geometry = null;
let material = null;
const materials = [];
// get geometry and materials(s) from connections
relationships.children.forEach( function ( child ) {
if ( geometryMap.has( child.ID ) ) {
geometry = geometryMap.get( child.ID );
}
if ( materialMap.has( child.ID ) ) {
materials.push( materialMap.get( child.ID ) );
}
} );
if ( materials.length > 1 ) {
material = materials;
} else if ( materials.length > 0 ) {
material = materials[ 0 ];
} else {
material = new MeshPhongMaterial( {
name: Loader.DEFAULT_MATERIAL_NAME,
color: 0xcccccc
} );
materials.push( material );
}
if ( 'color' in geometry.attributes ) {
materials.forEach( function ( material ) {
material.vertexColors = true;
} );
}
if ( geometry.FBX_Deformer ) {
model = new SkinnedMesh( geometry, material );
model.normalizeSkinWeights();
} else {
model = new Mesh( geometry, material );
}
return model;
}
createCurve( relationships, geometryMap ) {
const geometry = relationships.children.reduce( function ( geo, child ) {
if ( geometryMap.has( child.ID ) ) geo = geometryMap.get( child.ID );
return geo;
}, null );
// FBX does not list materials for Nurbs lines, so we'll just put our own in here.
const material = new LineBasicMaterial( {
name: Loader.DEFAULT_MATERIAL_NAME,
color: 0x3300ff,
linewidth: 1
} );
return new Line( geometry, material );
}
// parse the model node for transform data
getTransformData( model, modelNode ) {
const transformData = {};
if ( 'InheritType' in modelNode ) transformData.inheritType = parseInt( modelNode.InheritType.value );
if ( 'RotationOrder' in modelNode ) transformData.eulerOrder = getEulerOrder( modelNode.RotationOrder.value );
else transformData.eulerOrder = 'ZYX';
if ( 'Lcl_Translation' in modelNode ) transformData.translation = modelNode.Lcl_Translation.value;
if ( 'PreRotation' in modelNode ) transformData.preRotation = modelNode.PreRotation.value;
if ( 'Lcl_Rotation' in modelNode ) transformData.rotation = modelNode.Lcl_Rotation.value;
if ( 'PostRotation' in modelNode ) transformData.postRotation = modelNode.PostRotation.value;
if ( 'Lcl_Scaling' in modelNode ) transformData.scale = modelNode.Lcl_Scaling.value;
if ( 'ScalingOffset' in modelNode ) transformData.scalingOffset = modelNode.ScalingOffset.value;
if ( 'ScalingPivot' in modelNode ) transformData.scalingPivot = modelNode.ScalingPivot.value;
if ( 'RotationOffset' in modelNode ) transformData.rotationOffset = modelNode.RotationOffset.value;
if ( 'RotationPivot' in modelNode ) transformData.rotationPivot = modelNode.RotationPivot.value;
model.userData.transformData = transformData;
}
setLookAtProperties( model, modelNode ) {
if ( 'LookAtProperty' in modelNode ) {
const children = connections.get( model.ID ).children;
children.forEach( function ( child ) {
if ( child.relationship === 'LookAtProperty' ) {
const lookAtTarget = fbxTree.Objects.Model[ child.ID ];
if ( 'Lcl_Translation' in lookAtTarget ) {
const pos = lookAtTarget.Lcl_Translation.value;
// DirectionalLight, SpotLight
if ( model.target !== undefined ) {
model.target.position.fromArray( pos );
sceneGraph.add( model.target );
} else { // Cameras and other Object3Ds
model.lookAt( new Vector3().fromArray( pos ) );
}
}
}
} );
}
}
bindSkeleton( skeletons, geometryMap, modelMap ) {
const bindMatrices = this.parsePoseNodes();
for ( const ID in skeletons ) {
const skeleton = skeletons[ ID ];
const parents = connections.get( parseInt( skeleton.ID ) ).parents;
parents.forEach( function ( parent ) {
if ( geometryMap.has( parent.ID ) ) {
const geoID = parent.ID;
const geoRelationships = connections.get( geoID );
geoRelationships.parents.forEach( function ( geoConnParent ) {
if ( modelMap.has( geoConnParent.ID ) ) {
const model = modelMap.get( geoConnParent.ID );
model.bind( new Skeleton( skeleton.bones ), bindMatrices[ geoConnParent.ID ] );
}
} );
}
} );
}
}
parsePoseNodes() {
const bindMatrices = {};
if ( 'Pose' in fbxTree.Objects ) {
const BindPoseNode = fbxTree.Objects.Pose;
for ( const nodeID in BindPoseNode ) {
if ( BindPoseNode[ nodeID ].attrType === 'BindPose' && BindPoseNode[ nodeID ].NbPoseNodes > 0 ) {
const poseNodes = BindPoseNode[ nodeID ].PoseNode;
if ( Array.isArray( poseNodes ) ) {
poseNodes.forEach( function ( poseNode ) {
bindMatrices[ poseNode.Node ] = new Matrix4().fromArray( poseNode.Matrix.a );
} );
} else {
bindMatrices[ poseNodes.Node ] = new Matrix4().fromArray( poseNodes.Matrix.a );
}
}
}
}
return bindMatrices;
}
addGlobalSceneSettings() {
if ( 'GlobalSettings' in fbxTree ) {
if ( 'AmbientColor' in fbxTree.GlobalSettings ) {
// Parse ambient color - if it's not set to black (default), create an ambient light
const ambientColor = fbxTree.GlobalSettings.AmbientColor.value;
const r = ambientColor[ 0 ];
const g = ambientColor[ 1 ];
const b = ambientColor[ 2 ];
if ( r !== 0 || g !== 0 || b !== 0 ) {
const color = new Color( r, g, b ).convertSRGBToLinear();
sceneGraph.add( new AmbientLight( color, 1 ) );
}
}
if ( 'UnitScaleFactor' in fbxTree.GlobalSettings ) {
sceneGraph.userData.unitScaleFactor = fbxTree.GlobalSettings.UnitScaleFactor.value;
}
}
}
}
// parse Geometry data from FBXTree and return map of BufferGeometries
class GeometryParser {
constructor() {
this.negativeMaterialIndices = false;
}
// Parse nodes in FBXTree.Objects.Geometry
parse( deformers ) {
const geometryMap = new Map();
if ( 'Geometry' in fbxTree.Objects ) {
const geoNodes = fbxTree.Objects.Geometry;
for ( const nodeID in geoNodes ) {
const relationships = connections.get( parseInt( nodeID ) );
const geo = this.parseGeometry( relationships, geoNodes[ nodeID ], deformers );
geometryMap.set( parseInt( nodeID ), geo );
}
}
// report warnings
if ( this.negativeMaterialIndices === true ) {
console.warn( 'THREE.FBXLoader: The FBX file contains invalid (negative) material indices. The asset might not render as expected.' );
}
return geometryMap;
}
// Parse single node in FBXTree.Objects.Geometry
parseGeometry( relationships, geoNode, deformers ) {
switch ( geoNode.attrType ) {
case 'Mesh':
return this.parseMeshGeometry( relationships, geoNode, deformers );
break;
case 'NurbsCurve':
return this.parseNurbsGeometry( geoNode );
break;
}
}
// Parse single node mesh geometry in FBXTree.Objects.Geometry
parseMeshGeometry( relationships, geoNode, deformers ) {
const skeletons = deformers.skeletons;
const morphTargets = [];
const modelNodes = relationships.parents.map( function ( parent ) {
return fbxTree.Objects.Model[ parent.ID ];
} );
// don't create geometry if it is not associated with any models
if ( modelNodes.length === 0 ) return;
const skeleton = relationships.children.reduce( function ( skeleton, child ) {
if ( skeletons[ child.ID ] !== undefined ) skeleton = skeletons[ child.ID ];
return skeleton;
}, null );
relationships.children.forEach( function ( child ) {
if ( deformers.morphTargets[ child.ID ] !== undefined ) {
morphTargets.push( deformers.morphTargets[ child.ID ] );
}
} );
// Assume one model and get the preRotation from that
// if there is more than one model associated with the geometry this may cause problems
const modelNode = modelNodes[ 0 ];
const transformData = {};
if ( 'RotationOrder' in modelNode ) transformData.eulerOrder = getEulerOrder( modelNode.RotationOrder.value );
if ( 'InheritType' in modelNode ) transformData.inheritType = parseInt( modelNode.InheritType.value );
if ( 'GeometricTranslation' in modelNode ) transformData.translation = modelNode.GeometricTranslation.value;
if ( 'GeometricRotation' in modelNode ) transformData.rotation = modelNode.GeometricRotation.value;
if ( 'GeometricScaling' in modelNode ) transformData.scale = modelNode.GeometricScaling.value;
const transform = generateTransform( transformData );
return this.genGeometry( geoNode, skeleton, morphTargets, transform );
}
// Generate a BufferGeometry from a node in FBXTree.Objects.Geometry
genGeometry( geoNode, skeleton, morphTargets, preTransform ) {
const geo = new BufferGeometry();
if ( geoNode.attrName ) geo.name = geoNode.attrName;
const geoInfo = this.parseGeoNode( geoNode, skeleton );
const buffers = this.genBuffers( geoInfo );
const positionAttribute = new Float32BufferAttribute( buffers.vertex, 3 );
positionAttribute.applyMatrix4( preTransform );
geo.setAttribute( 'position', positionAttribute );
if ( buffers.colors.length > 0 ) {
geo.setAttribute( 'color', new Float32BufferAttribute( buffers.colors, 3 ) );
}
if ( skeleton ) {
geo.setAttribute( 'skinIndex', new Uint16BufferAttribute( buffers.weightsIndices, 4 ) );
geo.setAttribute( 'skinWeight', new Float32BufferAttribute( buffers.vertexWeights, 4 ) );
// used later to bind the skeleton to the model
geo.FBX_Deformer = skeleton;
}
if ( buffers.normal.length > 0 ) {
const normalMatrix = new Matrix3().getNormalMatrix( preTransform );
const normalAttribute = new Float32BufferAttribute( buffers.normal, 3 );
normalAttribute.applyNormalMatrix( normalMatrix );
geo.setAttribute( 'normal', normalAttribute );
}
buffers.uvs.forEach( function ( uvBuffer, i ) {
const name = i === 0 ? 'uv' : `uv${ i }`;
geo.setAttribute( name, new Float32BufferAttribute( buffers.uvs[ i ], 2 ) );
} );
if ( geoInfo.material && geoInfo.material.mappingType !== 'AllSame' ) {
// Convert the material indices of each vertex into rendering groups on the geometry.
let prevMaterialIndex = buffers.materialIndex[ 0 ];
let startIndex = 0;
buffers.materialIndex.forEach( function ( currentIndex, i ) {
if ( currentIndex !== prevMaterialIndex ) {
geo.addGroup( startIndex, i - startIndex, prevMaterialIndex );
prevMaterialIndex = currentIndex;
startIndex = i;
}
} );
// the loop above doesn't add the last group, do that here.
if ( geo.groups.length > 0 ) {
const lastGroup = geo.groups[ geo.groups.length - 1 ];
const lastIndex = lastGroup.start + lastGroup.count;
if ( lastIndex !== buffers.materialIndex.length ) {
geo.addGroup( lastIndex, buffers.materialIndex.length - lastIndex, prevMaterialIndex );
}
}
// case where there are multiple materials but the whole geometry is only
// using one of them
if ( geo.groups.length === 0 ) {
geo.addGroup( 0, buffers.materialIndex.length, buffers.materialIndex[ 0 ] );
}
}
this.addMorphTargets( geo, geoNode, morphTargets, preTransform );
return geo;
}
parseGeoNode( geoNode, skeleton ) {
const geoInfo = {};
geoInfo.vertexPositions = ( geoNode.Vertices !== undefined ) ? geoNode.Vertices.a : [];
geoInfo.vertexIndices = ( geoNode.PolygonVertexIndex !== undefined ) ? geoNode.PolygonVertexIndex.a : [];
if ( geoNode.LayerElementColor ) {
geoInfo.color = this.parseVertexColors( geoNode.LayerElementColor[ 0 ] );
}
if ( geoNode.LayerElementMaterial ) {
geoInfo.material = this.parseMaterialIndices( geoNode.LayerElementMaterial[ 0 ] );
}
if ( geoNode.LayerElementNormal ) {
geoInfo.normal = this.parseNormals( geoNode.LayerElementNormal[ 0 ] );
}
if ( geoNode.LayerElementUV ) {
geoInfo.uv = [];
let i = 0;
while ( geoNode.LayerElementUV[ i ] ) {
if ( geoNode.LayerElementUV[ i ].UV ) {
geoInfo.uv.push( this.parseUVs( geoNode.LayerElementUV[ i ] ) );
}
i ++;
}
}
geoInfo.weightTable = {};
if ( skeleton !== null ) {
geoInfo.skeleton = skeleton;
skeleton.rawBones.forEach( function ( rawBone, i ) {
// loop over the bone's vertex indices and weights
rawBone.indices.forEach( function ( index, j ) {
if ( geoInfo.weightTable[ index ] === undefined ) geoInfo.weightTable[ index ] = [];
geoInfo.weightTable[ index ].push( {
id: i,
weight: rawBone.weights[ j ],
} );
} );
} );
}
return geoInfo;
}
genBuffers( geoInfo ) {
const buffers = {
vertex: [],
normal: [],
colors: [],
uvs: [],
materialIndex: [],
vertexWeights: [],
weightsIndices: [],
};
let polygonIndex = 0;
let faceLength = 0;
let displayedWeightsWarning = false;
// these will hold data for a single face
let facePositionIndexes = [];
let faceNormals = [];
let faceColors = [];
let faceUVs = [];
let faceWeights = [];
let faceWeightIndices = [];
const scope = this;
geoInfo.vertexIndices.forEach( function ( vertexIndex, polygonVertexIndex ) {
let materialIndex;
let endOfFace = false;
// Face index and vertex index arrays are combined in a single array
// A cube with quad faces looks like this:
// PolygonVertexIndex: *24 {
// a: 0, 1, 3, -3, 2, 3, 5, -5, 4, 5, 7, -7, 6, 7, 1, -1, 1, 7, 5, -4, 6, 0, 2, -5
// }
// Negative numbers mark the end of a face - first face here is 0, 1, 3, -3
// to find index of last vertex bit shift the index: ^ - 1
if ( vertexIndex < 0 ) {
vertexIndex = vertexIndex ^ - 1; // equivalent to ( x * -1 ) - 1
endOfFace = true;
}
let weightIndices = [];
let weights = [];
facePositionIndexes.push( vertexIndex * 3, vertexIndex * 3 + 1, vertexIndex * 3 + 2 );
if ( geoInfo.color ) {
const data = getData( polygonVertexIndex, polygonIndex, vertexIndex, geoInfo.color );
faceColors.push( data[ 0 ], data[ 1 ], data[ 2 ] );
}
if ( geoInfo.skeleton ) {
if ( geoInfo.weightTable[ vertexIndex ] !== undefined ) {
geoInfo.weightTable[ vertexIndex ].forEach( function ( wt ) {
weights.push( wt.weight );
weightIndices.push( wt.id );
} );
}
if ( weights.length > 4 ) {
if ( ! displayedWeightsWarning ) {
console.warn( 'THREE.FBXLoader: Vertex has more than 4 skinning weights assigned to vertex. Deleting additional weights.' );
displayedWeightsWarning = true;
}
const wIndex = [ 0, 0, 0, 0 ];
const Weight = [ 0, 0, 0, 0 ];
weights.forEach( function ( weight, weightIndex ) {
let currentWeight = weight;
let currentIndex = weightIndices[ weightIndex ];
Weight.forEach( function ( comparedWeight, comparedWeightIndex, comparedWeightArray ) {
if ( currentWeight > comparedWeight ) {
comparedWeightArray[ comparedWeightIndex ] = currentWeight;
currentWeight = comparedWeight;
const tmp = wIndex[ comparedWeightIndex ];
wIndex[ comparedWeightIndex ] = currentIndex;
currentIndex = tmp;
}
} );
} );
weightIndices = wIndex;
weights = Weight;
}
// if the weight array is shorter than 4 pad with 0s
while ( weights.length < 4 ) {
weights.push( 0 );
weightIndices.push( 0 );
}
for ( let i = 0; i < 4; ++ i ) {
faceWeights.push( weights[ i ] );
faceWeightIndices.push( weightIndices[ i ] );
}
}
if ( geoInfo.normal ) {
const data = getData( polygonVertexIndex, polygonIndex, vertexIndex, geoInfo.normal );
faceNormals.push( data[ 0 ], data[ 1 ], data[ 2 ] );
}
if ( geoInfo.material && geoInfo.material.mappingType !== 'AllSame' ) {
materialIndex = getData( polygonVertexIndex, polygonIndex, vertexIndex, geoInfo.material )[ 0 ];
if ( materialIndex < 0 ) {
scope.negativeMaterialIndices = true;
materialIndex = 0; // fallback
}
}
if ( geoInfo.uv ) {
geoInfo.uv.forEach( function ( uv, i ) {
const data = getData( polygonVertexIndex, polygonIndex, vertexIndex, uv );
if ( faceUVs[ i ] === undefined ) {
faceUVs[ i ] = [];
}
faceUVs[ i ].push( data[ 0 ] );
faceUVs[ i ].push( data[ 1 ] );
} );
}
faceLength ++;
if ( endOfFace ) {
scope.genFace( buffers, geoInfo, facePositionIndexes, materialIndex, faceNormals, faceColors, faceUVs, faceWeights, faceWeightIndices, faceLength );
polygonIndex ++;
faceLength = 0;
// reset arrays for the next face
facePositionIndexes = [];
faceNormals = [];
faceColors = [];
faceUVs = [];
faceWeights = [];
faceWeightIndices = [];
}
} );
return buffers;
}
// See https://www.khronos.org/opengl/wiki/Calculating_a_Surface_Normal
getNormalNewell( vertices ) {
const normal = new Vector3( 0.0, 0.0, 0.0 );
for ( let i = 0; i < vertices.length; i ++ ) {
const current = vertices[ i ];
const next = vertices[ ( i + 1 ) % vertices.length ];
normal.x += ( current.y - next.y ) * ( current.z + next.z );
normal.y += ( current.z - next.z ) * ( current.x + next.x );
normal.z += ( current.x - next.x ) * ( current.y + next.y );
}
normal.normalize();
return normal;
}
getNormalTangentAndBitangent( vertices ) {
const normalVector = this.getNormalNewell( vertices );
// Avoid up being equal or almost equal to normalVector
const up = Math.abs( normalVector.z ) > 0.5 ? new Vector3( 0.0, 1.0, 0.0 ) : new Vector3( 0.0, 0.0, 1.0 );
const tangent = up.cross( normalVector ).normalize();
const bitangent = normalVector.clone().cross( tangent ).normalize();
return {
normal: normalVector,
tangent: tangent,
bitangent: bitangent
};
}
flattenVertex( vertex, normalTangent, normalBitangent ) {
return new Vector2(
vertex.dot( normalTangent ),
vertex.dot( normalBitangent )
);
}
// Generate data for a single face in a geometry. If the face is a quad then split it into 2 tris
genFace( buffers, geoInfo, facePositionIndexes, materialIndex, faceNormals, faceColors, faceUVs, faceWeights, faceWeightIndices, faceLength ) {
let triangles;
if ( faceLength > 3 ) {
// Triangulate n-gon using earcut
const vertices = [];
for ( let i = 0; i < facePositionIndexes.length; i += 3 ) {
vertices.push( new Vector3(
geoInfo.vertexPositions[ facePositionIndexes[ i ] ],
geoInfo.vertexPositions[ facePositionIndexes[ i + 1 ] ],
geoInfo.vertexPositions[ facePositionIndexes[ i + 2 ] ]
) );
}
const { tangent, bitangent } = this.getNormalTangentAndBitangent( vertices );
const triangulationInput = [];
for ( const vertex of vertices ) {
triangulationInput.push( this.flattenVertex( vertex, tangent, bitangent ) );
}
triangles = ShapeUtils.triangulateShape( triangulationInput, [] );
} else {
// Regular triangle, skip earcut triangulation step
triangles = [[ 0, 1, 2 ]];
}
for ( const [ i0, i1, i2 ] of triangles ) {
buffers.vertex.push( geoInfo.vertexPositions[ facePositionIndexes[ i0 * 3 ] ] );
buffers.vertex.push( geoInfo.vertexPositions[ facePositionIndexes[ i0 * 3 + 1 ] ] );
buffers.vertex.push( geoInfo.vertexPositions[ facePositionIndexes[ i0 * 3 + 2 ] ] );
buffers.vertex.push( geoInfo.vertexPositions[ facePositionIndexes[ i1 * 3 ] ] );
buffers.vertex.push( geoInfo.vertexPositions[ facePositionIndexes[ i1 * 3 + 1 ] ] );
buffers.vertex.push( geoInfo.vertexPositions[ facePositionIndexes[ i1 * 3 + 2 ] ] );
buffers.vertex.push( geoInfo.vertexPositions[ facePositionIndexes[ i2 * 3 ] ] );
buffers.vertex.push( geoInfo.vertexPositions[ facePositionIndexes[ i2 * 3 + 1 ] ] );
buffers.vertex.push( geoInfo.vertexPositions[ facePositionIndexes[ i2 * 3 + 2 ] ] );
if ( geoInfo.skeleton ) {
buffers.vertexWeights.push( faceWeights[ i0 * 4 ] );
buffers.vertexWeights.push( faceWeights[ i0 * 4 + 1 ] );
buffers.vertexWeights.push( faceWeights[ i0 * 4 + 2 ] );
buffers.vertexWeights.push( faceWeights[ i0 * 4 + 3 ] );
buffers.vertexWeights.push( faceWeights[ i1 * 4 ] );
buffers.vertexWeights.push( faceWeights[ i1 * 4 + 1 ] );
buffers.vertexWeights.push( faceWeights[ i1 * 4 + 2 ] );
buffers.vertexWeights.push( faceWeights[ i1 * 4 + 3 ] );
buffers.vertexWeights.push( faceWeights[ i2 * 4 ] );
buffers.vertexWeights.push( faceWeights[ i2 * 4 + 1 ] );
buffers.vertexWeights.push( faceWeights[ i2 * 4 + 2 ] );
buffers.vertexWeights.push( faceWeights[ i2 * 4 + 3 ] );
buffers.weightsIndices.push( faceWeightIndices[ i0 * 4 ] );
buffers.weightsIndices.push( faceWeightIndices[ i0 * 4 + 1 ] );
buffers.weightsIndices.push( faceWeightIndices[ i0 * 4 + 2 ] );
buffers.weightsIndices.push( faceWeightIndices[ i0 * 4 + 3 ] );
buffers.weightsIndices.push( faceWeightIndices[ i1 * 4 ] );
buffers.weightsIndices.push( faceWeightIndices[ i1 * 4 + 1 ] );
buffers.weightsIndices.push( faceWeightIndices[ i1 * 4 + 2 ] );
buffers.weightsIndices.push( faceWeightIndices[ i1 * 4 + 3 ] );
buffers.weightsIndices.push( faceWeightIndices[ i2 * 4 ] );
buffers.weightsIndices.push( faceWeightIndices[ i2 * 4 + 1 ] );
buffers.weightsIndices.push( faceWeightIndices[ i2 * 4 + 2 ] );
buffers.weightsIndices.push( faceWeightIndices[ i2 * 4 + 3 ] );
}
if ( geoInfo.color ) {
buffers.colors.push( faceColors[ i0 * 3 ] );
buffers.colors.push( faceColors[ i0 * 3 + 1 ] );
buffers.colors.push( faceColors[ i0 * 3 + 2 ] );
buffers.colors.push( faceColors[ i1 * 3 ] );
buffers.colors.push( faceColors[ i1 * 3 + 1 ] );
buffers.colors.push( faceColors[ i1 * 3 + 2 ] );
buffers.colors.push( faceColors[ i2 * 3 ] );
buffers.colors.push( faceColors[ i2 * 3 + 1 ] );
buffers.colors.push( faceColors[ i2 * 3 + 2 ] );
}
if ( geoInfo.material && geoInfo.material.mappingType !== 'AllSame' ) {
buffers.materialIndex.push( materialIndex );
buffers.materialIndex.push( materialIndex );
buffers.materialIndex.push( materialIndex );
}
if ( geoInfo.normal ) {
buffers.normal.push( faceNormals[ i0 * 3 ] );
buffers.normal.push( faceNormals[ i0 * 3 + 1 ] );
buffers.normal.push( faceNormals[ i0 * 3 + 2 ] );
buffers.normal.push( faceNormals[ i1 * 3 ] );
buffers.normal.push( faceNormals[ i1 * 3 + 1 ] );
buffers.normal.push( faceNormals[ i1 * 3 + 2 ] );
buffers.normal.push( faceNormals[ i2 * 3 ] );
buffers.normal.push( faceNormals[ i2 * 3 + 1 ] );
buffers.normal.push( faceNormals[ i2 * 3 + 2 ] );
}
if ( geoInfo.uv ) {
geoInfo.uv.forEach( function ( uv, j ) {
if ( buffers.uvs[ j ] === undefined ) buffers.uvs[ j ] = [];
buffers.uvs[ j ].push( faceUVs[ j ][ i0 * 2 ] );
buffers.uvs[ j ].push( faceUVs[ j ][ i0 * 2 + 1 ] );
buffers.uvs[ j ].push( faceUVs[ j ][ i1 * 2 ] );
buffers.uvs[ j ].push( faceUVs[ j ][ i1 * 2 + 1 ] );
buffers.uvs[ j ].push( faceUVs[ j ][ i2 * 2 ] );
buffers.uvs[ j ].push( faceUVs[ j ][ i2 * 2 + 1 ] );
} );
}
}
}
addMorphTargets( parentGeo, parentGeoNode, morphTargets, preTransform ) {
if ( morphTargets.length === 0 ) return;
parentGeo.morphTargetsRelative = true;
parentGeo.morphAttributes.position = [];
// parentGeo.morphAttributes.normal = []; // not implemented
const scope = this;
morphTargets.forEach( function ( morphTarget ) {
morphTarget.rawTargets.forEach( function ( rawTarget ) {
const morphGeoNode = fbxTree.Objects.Geometry[ rawTarget.geoID ];
if ( morphGeoNode !== undefined ) {
scope.genMorphGeometry( parentGeo, parentGeoNode, morphGeoNode, preTransform, rawTarget.name );
}
} );
} );
}
// a morph geometry node is similar to a standard node, and the node is also contained
// in FBXTree.Objects.Geometry, however it can only have attributes for position, normal
// and a special attribute Index defining which vertices of the original geometry are affected
// Normal and position attributes only have data for the vertices that are affected by the morph
genMorphGeometry( parentGeo, parentGeoNode, morphGeoNode, preTransform, name ) {
const vertexIndices = ( parentGeoNode.PolygonVertexIndex !== undefined ) ? parentGeoNode.PolygonVertexIndex.a : [];
const morphPositionsSparse = ( morphGeoNode.Vertices !== undefined ) ? morphGeoNode.Vertices.a : [];
const indices = ( morphGeoNode.Indexes !== undefined ) ? morphGeoNode.Indexes.a : [];
const length = parentGeo.attributes.position.count * 3;
const morphPositions = new Float32Array( length );
for ( let i = 0; i < indices.length; i ++ ) {
const morphIndex = indices[ i ] * 3;
morphPositions[ morphIndex ] = morphPositionsSparse[ i * 3 ];
morphPositions[ morphIndex + 1 ] = morphPositionsSparse[ i * 3 + 1 ];
morphPositions[ morphIndex + 2 ] = morphPositionsSparse[ i * 3 + 2 ];
}
// TODO: add morph normal support
const morphGeoInfo = {
vertexIndices: vertexIndices,
vertexPositions: morphPositions,
};
const morphBuffers = this.genBuffers( morphGeoInfo );
const positionAttribute = new Float32BufferAttribute( morphBuffers.vertex, 3 );
positionAttribute.name = name || morphGeoNode.attrName;
positionAttribute.applyMatrix4( preTransform );
parentGeo.morphAttributes.position.push( positionAttribute );
}
// Parse normal from FBXTree.Objects.Geometry.LayerElementNormal if it exists
parseNormals( NormalNode ) {
const mappingType = NormalNode.MappingInformationType;
const referenceType = NormalNode.ReferenceInformationType;
const buffer = NormalNode.Normals.a;
let indexBuffer = [];
if ( referenceType === 'IndexToDirect' ) {
if ( 'NormalIndex' in NormalNode ) {
indexBuffer = NormalNode.NormalIndex.a;
} else if ( 'NormalsIndex' in NormalNode ) {
indexBuffer = NormalNode.NormalsIndex.a;
}
}
return {
dataSize: 3,
buffer: buffer,
indices: indexBuffer,
mappingType: mappingType,
referenceType: referenceType
};
}
// Parse UVs from FBXTree.Objects.Geometry.LayerElementUV if it exists
parseUVs( UVNode ) {
const mappingType = UVNode.MappingInformationType;
const referenceType = UVNode.ReferenceInformationType;
const buffer = UVNode.UV.a;
let indexBuffer = [];
if ( referenceType === 'IndexToDirect' ) {
indexBuffer = UVNode.UVIndex.a;
}
return {
dataSize: 2,
buffer: buffer,
indices: indexBuffer,
mappingType: mappingType,
referenceType: referenceType
};
}
// Parse Vertex Colors from FBXTree.Objects.Geometry.LayerElementColor if it exists
parseVertexColors( ColorNode ) {
const mappingType = ColorNode.MappingInformationType;
const referenceType = ColorNode.ReferenceInformationType;
const buffer = ColorNode.Colors.a;
let indexBuffer = [];
if ( referenceType === 'IndexToDirect' ) {
indexBuffer = ColorNode.ColorIndex.a;
}
for ( let i = 0, c = new Color(); i < buffer.length; i += 4 ) {
c.fromArray( buffer, i ).convertSRGBToLinear().toArray( buffer, i );
}
return {
dataSize: 4,
buffer: buffer,
indices: indexBuffer,
mappingType: mappingType,
referenceType: referenceType
};
}
// Parse mapping and material data in FBXTree.Objects.Geometry.LayerElementMaterial if it exists
parseMaterialIndices( MaterialNode ) {
const mappingType = MaterialNode.MappingInformationType;
const referenceType = MaterialNode.ReferenceInformationType;
if ( mappingType === 'NoMappingInformation' ) {
return {
dataSize: 1,
buffer: [ 0 ],
indices: [ 0 ],
mappingType: 'AllSame',
referenceType: referenceType
};
}
const materialIndexBuffer = MaterialNode.Materials.a;
// Since materials are stored as indices, there's a bit of a mismatch between FBX and what
// we expect.So we create an intermediate buffer that points to the index in the buffer,
// for conforming with the other functions we've written for other data.
const materialIndices = [];
for ( let i = 0; i < materialIndexBuffer.length; ++ i ) {
materialIndices.push( i );
}
return {
dataSize: 1,
buffer: materialIndexBuffer,
indices: materialIndices,
mappingType: mappingType,
referenceType: referenceType
};
}
// Generate a NurbGeometry from a node in FBXTree.Objects.Geometry
parseNurbsGeometry( geoNode ) {
const order = parseInt( geoNode.Order );
if ( isNaN( order ) ) {
console.error( 'THREE.FBXLoader: Invalid Order %s given for geometry ID: %s', geoNode.Order, geoNode.id );
return new BufferGeometry();
}
const degree = order - 1;
const knots = geoNode.KnotVector.a;
const controlPoints = [];
const pointsValues = geoNode.Points.a;
for ( let i = 0, l = pointsValues.length; i < l; i += 4 ) {
controlPoints.push( new Vector4().fromArray( pointsValues, i ) );
}
let startKnot, endKnot;
if ( geoNode.Form === 'Closed' ) {
controlPoints.push( controlPoints[ 0 ] );
} else if ( geoNode.Form === 'Periodic' ) {
startKnot = degree;
endKnot = knots.length - 1 - startKnot;
for ( let i = 0; i < degree; ++ i ) {
controlPoints.push( controlPoints[ i ] );
}
}
const curve = new NURBSCurve( degree, knots, controlPoints, startKnot, endKnot );
const points = curve.getPoints( controlPoints.length * 12 );
return new BufferGeometry().setFromPoints( points );
}
}
// parse animation data from FBXTree
class AnimationParser {
// take raw animation clips and turn them into three.js animation clips
parse() {
const animationClips = [];
const rawClips = this.parseClips();
if ( rawClips !== undefined ) {
for ( const key in rawClips ) {
const rawClip = rawClips[ key ];
const clip = this.addClip( rawClip );
animationClips.push( clip );
}
}
return animationClips;
}
parseClips() {
// since the actual transformation data is stored in FBXTree.Objects.AnimationCurve,
// if this is undefined we can safely assume there are no animations
if ( fbxTree.Objects.AnimationCurve === undefined ) return undefined;
const curveNodesMap = this.parseAnimationCurveNodes();
this.parseAnimationCurves( curveNodesMap );
const layersMap = this.parseAnimationLayers( curveNodesMap );
const rawClips = this.parseAnimStacks( layersMap );
return rawClips;
}
// parse nodes in FBXTree.Objects.AnimationCurveNode
// each AnimationCurveNode holds data for an animation transform for a model (e.g. left arm rotation )
// and is referenced by an AnimationLayer
parseAnimationCurveNodes() {
const rawCurveNodes = fbxTree.Objects.AnimationCurveNode;
const curveNodesMap = new Map();
for ( const nodeID in rawCurveNodes ) {
const rawCurveNode = rawCurveNodes[ nodeID ];
if ( rawCurveNode.attrName.match( /S|R|T|DeformPercent/ ) !== null ) {
const curveNode = {
id: rawCurveNode.id,
attr: rawCurveNode.attrName,
curves: {},
};
curveNodesMap.set( curveNode.id, curveNode );
}
}
return curveNodesMap;
}
// parse nodes in FBXTree.Objects.AnimationCurve and connect them up to
// previously parsed AnimationCurveNodes. Each AnimationCurve holds data for a single animated
// axis ( e.g. times and values of x rotation)
parseAnimationCurves( curveNodesMap ) {
const rawCurves = fbxTree.Objects.AnimationCurve;
// TODO: Many values are identical up to roundoff error, but won't be optimised
// e.g. position times: [0, 0.4, 0. 8]
// position values: [7.23538335023477e-7, 93.67518615722656, -0.9982695579528809, 7.23538335023477e-7, 93.67518615722656, -0.9982695579528809, 7.235384487103147e-7, 93.67520904541016, -0.9982695579528809]
// clearly, this should be optimised to
// times: [0], positions [7.23538335023477e-7, 93.67518615722656, -0.9982695579528809]
// this shows up in nearly every FBX file, and generally time array is length > 100
for ( const nodeID in rawCurves ) {
const animationCurve = {
id: rawCurves[ nodeID ].id,
times: rawCurves[ nodeID ].KeyTime.a.map( convertFBXTimeToSeconds ),
values: rawCurves[ nodeID ].KeyValueFloat.a,
};
const relationships = connections.get( animationCurve.id );
if ( relationships !== undefined ) {
const animationCurveID = relationships.parents[ 0 ].ID;
const animationCurveRelationship = relationships.parents[ 0 ].relationship;
if ( animationCurveRelationship.match( /X/ ) ) {
curveNodesMap.get( animationCurveID ).curves[ 'x' ] = animationCurve;
} else if ( animationCurveRelationship.match( /Y/ ) ) {
curveNodesMap.get( animationCurveID ).curves[ 'y' ] = animationCurve;
} else if ( animationCurveRelationship.match( /Z/ ) ) {
curveNodesMap.get( animationCurveID ).curves[ 'z' ] = animationCurve;
} else if ( animationCurveRelationship.match( /DeformPercent/ ) && curveNodesMap.has( animationCurveID ) ) {
curveNodesMap.get( animationCurveID ).curves[ 'morph' ] = animationCurve;
}
}
}
}
// parse nodes in FBXTree.Objects.AnimationLayer. Each layers holds references
// to various AnimationCurveNodes and is referenced by an AnimationStack node
// note: theoretically a stack can have multiple layers, however in practice there always seems to be one per stack
parseAnimationLayers( curveNodesMap ) {
const rawLayers = fbxTree.Objects.AnimationLayer;
const layersMap = new Map();
for ( const nodeID in rawLayers ) {
const layerCurveNodes = [];
const connection = connections.get( parseInt( nodeID ) );
if ( connection !== undefined ) {
// all the animationCurveNodes used in the layer
const children = connection.children;
children.forEach( function ( child, i ) {
if ( curveNodesMap.has( child.ID ) ) {
const curveNode = curveNodesMap.get( child.ID );
// check that the curves are defined for at least one axis, otherwise ignore the curveNode
if ( curveNode.curves.x !== undefined || curveNode.curves.y !== undefined || curveNode.curves.z !== undefined ) {
if ( layerCurveNodes[ i ] === undefined ) {
const modelID = connections.get( child.ID ).parents.filter( function ( parent ) {
return parent.relationship !== undefined;
} )[ 0 ].ID;
if ( modelID !== undefined ) {
const rawModel = fbxTree.Objects.Model[ modelID.toString() ];
if ( rawModel === undefined ) {
console.warn( 'THREE.FBXLoader: Encountered a unused curve.', child );
return;
}
const node = {
modelName: rawModel.attrName ? PropertyBinding.sanitizeNodeName( rawModel.attrName ) : '',
ID: rawModel.id,
initialPosition: [ 0, 0, 0 ],
initialRotation: [ 0, 0, 0 ],
initialScale: [ 1, 1, 1 ],
};
sceneGraph.traverse( function ( child ) {
if ( child.ID === rawModel.id ) {
node.transform = child.matrix;
if ( child.userData.transformData ) node.eulerOrder = child.userData.transformData.eulerOrder;
}
} );
if ( ! node.transform ) node.transform = new Matrix4();
// if the animated model is pre rotated, we'll have to apply the pre rotations to every
// animation value as well
if ( 'PreRotation' in rawModel ) node.preRotation = rawModel.PreRotation.value;
if ( 'PostRotation' in rawModel ) node.postRotation = rawModel.PostRotation.value;
layerCurveNodes[ i ] = node;
}
}
if ( layerCurveNodes[ i ] ) layerCurveNodes[ i ][ curveNode.attr ] = curveNode;
} else if ( curveNode.curves.morph !== undefined ) {
if ( layerCurveNodes[ i ] === undefined ) {
const deformerID = connections.get( child.ID ).parents.filter( function ( parent ) {
return parent.relationship !== undefined;
} )[ 0 ].ID;
const morpherID = connections.get( deformerID ).parents[ 0 ].ID;
const geoID = connections.get( morpherID ).parents[ 0 ].ID;
// assuming geometry is not used in more than one model
const modelID = connections.get( geoID ).parents[ 0 ].ID;
const rawModel = fbxTree.Objects.Model[ modelID ];
const node = {
modelName: rawModel.attrName ? PropertyBinding.sanitizeNodeName( rawModel.attrName ) : '',
morphName: fbxTree.Objects.Deformer[ deformerID ].attrName,
};
layerCurveNodes[ i ] = node;
}
layerCurveNodes[ i ][ curveNode.attr ] = curveNode;
}
}
} );
layersMap.set( parseInt( nodeID ), layerCurveNodes );
}
}
return layersMap;
}
// parse nodes in FBXTree.Objects.AnimationStack. These are the top level node in the animation
// hierarchy. Each Stack node will be used to create a AnimationClip
parseAnimStacks( layersMap ) {
const rawStacks = fbxTree.Objects.AnimationStack;
// connect the stacks (clips) up to the layers
const rawClips = {};
for ( const nodeID in rawStacks ) {
const children = connections.get( parseInt( nodeID ) ).children;
if ( children.length > 1 ) {
// it seems like stacks will always be associated with a single layer. But just in case there are files
// where there are multiple layers per stack, we'll display a warning
console.warn( 'THREE.FBXLoader: Encountered an animation stack with multiple layers, this is currently not supported. Ignoring subsequent layers.' );
}
const layer = layersMap.get( children[ 0 ].ID );
rawClips[ nodeID ] = {
name: rawStacks[ nodeID ].attrName,
layer: layer,
};
}
return rawClips;
}
addClip( rawClip ) {
let tracks = [];
const scope = this;
rawClip.layer.forEach( function ( rawTracks ) {
tracks = tracks.concat( scope.generateTracks( rawTracks ) );
} );
return new AnimationClip( rawClip.name, - 1, tracks );
}
generateTracks( rawTracks ) {
const tracks = [];
let initialPosition = new Vector3();
let initialScale = new Vector3();
if ( rawTracks.transform ) rawTracks.transform.decompose( initialPosition, new Quaternion(), initialScale );
initialPosition = initialPosition.toArray();
initialScale = initialScale.toArray();
if ( rawTracks.T !== undefined && Object.keys( rawTracks.T.curves ).length > 0 ) {
const positionTrack = this.generateVectorTrack( rawTracks.modelName, rawTracks.T.curves, initialPosition, 'position' );
if ( positionTrack !== undefined ) tracks.push( positionTrack );
}
if ( rawTracks.R !== undefined && Object.keys( rawTracks.R.curves ).length > 0 ) {
const rotationTrack = this.generateRotationTrack( rawTracks.modelName, rawTracks.R.curves, rawTracks.preRotation, rawTracks.postRotation, rawTracks.eulerOrder );
if ( rotationTrack !== undefined ) tracks.push( rotationTrack );
}
if ( rawTracks.S !== undefined && Object.keys( rawTracks.S.curves ).length > 0 ) {
const scaleTrack = this.generateVectorTrack( rawTracks.modelName, rawTracks.S.curves, initialScale, 'scale' );
if ( scaleTrack !== undefined ) tracks.push( scaleTrack );
}
if ( rawTracks.DeformPercent !== undefined ) {
const morphTrack = this.generateMorphTrack( rawTracks );
if ( morphTrack !== undefined ) tracks.push( morphTrack );
}
return tracks;
}
generateVectorTrack( modelName, curves, initialValue, type ) {
const times = this.getTimesForAllAxes( curves );
const values = this.getKeyframeTrackValues( times, curves, initialValue );
return new VectorKeyframeTrack( modelName + '.' + type, times, values );
}
generateRotationTrack( modelName, curves, preRotation, postRotation, eulerOrder ) {
let times;
let values;
if ( curves.x !== undefined && curves.y !== undefined && curves.z !== undefined ) {
const result = this.interpolateRotations( curves.x, curves.y, curves.z, eulerOrder );
times = result[ 0 ];
values = result[ 1 ];
}
if ( preRotation !== undefined ) {
preRotation = preRotation.map( MathUtils.degToRad );
preRotation.push( eulerOrder );
preRotation = new Euler().fromArray( preRotation );
preRotation = new Quaternion().setFromEuler( preRotation );
}
if ( postRotation !== undefined ) {
postRotation = postRotation.map( MathUtils.degToRad );
postRotation.push( eulerOrder );
postRotation = new Euler().fromArray( postRotation );
postRotation = new Quaternion().setFromEuler( postRotation ).invert();
}
const quaternion = new Quaternion();
const euler = new Euler();
const quaternionValues = [];
if ( ! values || ! times ) return new QuaternionKeyframeTrack( modelName + '.quaternion', [ 0 ], [ 0 ] );
for ( let i = 0; i < values.length; i += 3 ) {
euler.set( values[ i ], values[ i + 1 ], values[ i + 2 ], eulerOrder );
quaternion.setFromEuler( euler );
if ( preRotation !== undefined ) quaternion.premultiply( preRotation );
if ( postRotation !== undefined ) quaternion.multiply( postRotation );
// Check unroll
if ( i > 2 ) {
const prevQuat = new Quaternion().fromArray(
quaternionValues,
( ( i - 3 ) / 3 ) * 4
);
if ( prevQuat.dot( quaternion ) < 0 ) {
quaternion.set( - quaternion.x, - quaternion.y, - quaternion.z, - quaternion.w );
}
}
quaternion.toArray( quaternionValues, ( i / 3 ) * 4 );
}
return new QuaternionKeyframeTrack( modelName + '.quaternion', times, quaternionValues );
}
generateMorphTrack( rawTracks ) {
const curves = rawTracks.DeformPercent.curves.morph;
const values = curves.values.map( function ( val ) {
return val / 100;
} );
const morphNum = sceneGraph.getObjectByName( rawTracks.modelName ).morphTargetDictionary[ rawTracks.morphName ];
return new NumberKeyframeTrack( rawTracks.modelName + '.morphTargetInfluences[' + morphNum + ']', curves.times, values );
}
// For all animated objects, times are defined separately for each axis
// Here we'll combine the times into one sorted array without duplicates
getTimesForAllAxes( curves ) {
let times = [];
// first join together the times for each axis, if defined
if ( curves.x !== undefined ) times = times.concat( curves.x.times );
if ( curves.y !== undefined ) times = times.concat( curves.y.times );
if ( curves.z !== undefined ) times = times.concat( curves.z.times );
// then sort them
times = times.sort( function ( a, b ) {
return a - b;
} );
// and remove duplicates
if ( times.length > 1 ) {
let targetIndex = 1;
let lastValue = times[ 0 ];
for ( let i = 1; i < times.length; i ++ ) {
const currentValue = times[ i ];
if ( currentValue !== lastValue ) {
times[ targetIndex ] = currentValue;
lastValue = currentValue;
targetIndex ++;
}
}
times = times.slice( 0, targetIndex );
}
return times;
}
getKeyframeTrackValues( times, curves, initialValue ) {
const prevValue = initialValue;
const values = [];
let xIndex = - 1;
let yIndex = - 1;
let zIndex = - 1;
times.forEach( function ( time ) {
if ( curves.x ) xIndex = curves.x.times.indexOf( time );
if ( curves.y ) yIndex = curves.y.times.indexOf( time );
if ( curves.z ) zIndex = curves.z.times.indexOf( time );
// if there is an x value defined for this frame, use that
if ( xIndex !== - 1 ) {
const xValue = curves.x.values[ xIndex ];
values.push( xValue );
prevValue[ 0 ] = xValue;
} else {
// otherwise use the x value from the previous frame
values.push( prevValue[ 0 ] );
}
if ( yIndex !== - 1 ) {
const yValue = curves.y.values[ yIndex ];
values.push( yValue );
prevValue[ 1 ] = yValue;
} else {
values.push( prevValue[ 1 ] );
}
if ( zIndex !== - 1 ) {
const zValue = curves.z.values[ zIndex ];
values.push( zValue );
prevValue[ 2 ] = zValue;
} else {
values.push( prevValue[ 2 ] );
}
} );
return values;
}
// Rotations are defined as Euler angles which can have values of any size
// These will be converted to quaternions which don't support values greater than
// PI, so we'll interpolate large rotations
interpolateRotations( curvex, curvey, curvez, eulerOrder ) {
const times = [];
const values = [];
// Add first frame
times.push( curvex.times[ 0 ] );
values.push( MathUtils.degToRad( curvex.values[ 0 ] ) );
values.push( MathUtils.degToRad( curvey.values[ 0 ] ) );
values.push( MathUtils.degToRad( curvez.values[ 0 ] ) );
for ( let i = 1; i < curvex.values.length; i ++ ) {
const initialValue = [
curvex.values[ i - 1 ],
curvey.values[ i - 1 ],
curvez.values[ i - 1 ],
];
if ( isNaN( initialValue[ 0 ] ) || isNaN( initialValue[ 1 ] ) || isNaN( initialValue[ 2 ] ) ) {
continue;
}
const initialValueRad = initialValue.map( MathUtils.degToRad );
const currentValue = [
curvex.values[ i ],
curvey.values[ i ],
curvez.values[ i ],
];
if ( isNaN( currentValue[ 0 ] ) || isNaN( currentValue[ 1 ] ) || isNaN( currentValue[ 2 ] ) ) {
continue;
}
const currentValueRad = currentValue.map( MathUtils.degToRad );
const valuesSpan = [
currentValue[ 0 ] - initialValue[ 0 ],
currentValue[ 1 ] - initialValue[ 1 ],
currentValue[ 2 ] - initialValue[ 2 ],
];
const absoluteSpan = [
Math.abs( valuesSpan[ 0 ] ),
Math.abs( valuesSpan[ 1 ] ),
Math.abs( valuesSpan[ 2 ] ),
];
if ( absoluteSpan[ 0 ] >= 180 || absoluteSpan[ 1 ] >= 180 || absoluteSpan[ 2 ] >= 180 ) {
const maxAbsSpan = Math.max( ...absoluteSpan );
const numSubIntervals = maxAbsSpan / 180;
const E1 = new Euler( ...initialValueRad, eulerOrder );
const E2 = new Euler( ...currentValueRad, eulerOrder );
const Q1 = new Quaternion().setFromEuler( E1 );
const Q2 = new Quaternion().setFromEuler( E2 );
// Check unroll
if ( Q1.dot( Q2 ) ) {
Q2.set( - Q2.x, - Q2.y, - Q2.z, - Q2.w );
}
// Interpolate
const initialTime = curvex.times[ i - 1 ];
const timeSpan = curvex.times[ i ] - initialTime;
const Q = new Quaternion();
const E = new Euler();
for ( let t = 0; t < 1; t += 1 / numSubIntervals ) {
Q.copy( Q1.clone().slerp( Q2.clone(), t ) );
times.push( initialTime + t * timeSpan );
E.setFromQuaternion( Q, eulerOrder );
values.push( E.x );
values.push( E.y );
values.push( E.z );
}
} else {
times.push( curvex.times[ i ] );
values.push( MathUtils.degToRad( curvex.values[ i ] ) );
values.push( MathUtils.degToRad( curvey.values[ i ] ) );
values.push( MathUtils.degToRad( curvez.values[ i ] ) );
}
}
return [ times, values ];
}
}
// parse an FBX file in ASCII format
class TextParser {
getPrevNode() {
return this.nodeStack[ this.currentIndent - 2 ];
}
getCurrentNode() {
return this.nodeStack[ this.currentIndent - 1 ];
}
getCurrentProp() {
return this.currentProp;
}
pushStack( node ) {
this.nodeStack.push( node );
this.currentIndent += 1;
}
popStack() {
this.nodeStack.pop();
this.currentIndent -= 1;
}
setCurrentProp( val, name ) {
this.currentProp = val;
this.currentPropName = name;
}
parse( text ) {
this.currentIndent = 0;
this.allNodes = new FBXTree();
this.nodeStack = [];
this.currentProp = [];
this.currentPropName = '';
const scope = this;
const split = text.split( /[\r\n]+/ );
split.forEach( function ( line, i ) {
const matchComment = line.match( /^[\s\t]*;/ );
const matchEmpty = line.match( /^[\s\t]*$/ );
if ( matchComment || matchEmpty ) return;
const matchBeginning = line.match( '^\\t{' + scope.currentIndent + '}(\\w+):(.*){', '' );
const matchProperty = line.match( '^\\t{' + ( scope.currentIndent ) + '}(\\w+):[\\s\\t\\r\\n](.*)' );
const matchEnd = line.match( '^\\t{' + ( scope.currentIndent - 1 ) + '}}' );
if ( matchBeginning ) {
scope.parseNodeBegin( line, matchBeginning );
} else if ( matchProperty ) {
scope.parseNodeProperty( line, matchProperty, split[ ++ i ] );
} else if ( matchEnd ) {
scope.popStack();
} else if ( line.match( /^[^\s\t}]/ ) ) {
// large arrays are split over multiple lines terminated with a ',' character
// if this is encountered the line needs to be joined to the previous line
scope.parseNodePropertyContinued( line );
}
} );
return this.allNodes;
}
parseNodeBegin( line, property ) {
const nodeName = property[ 1 ].trim().replace( /^"/, '' ).replace( /"$/, '' );
const nodeAttrs = property[ 2 ].split( ',' ).map( function ( attr ) {
return attr.trim().replace( /^"/, '' ).replace( /"$/, '' );
} );
const node = { name: nodeName };
const attrs = this.parseNodeAttr( nodeAttrs );
const currentNode = this.getCurrentNode();
// a top node
if ( this.currentIndent === 0 ) {
this.allNodes.add( nodeName, node );
} else { // a subnode
// if the subnode already exists, append it
if ( nodeName in currentNode ) {
// special case Pose needs PoseNodes as an array
if ( nodeName === 'PoseNode' ) {
currentNode.PoseNode.push( node );
} else if ( currentNode[ nodeName ].id !== undefined ) {
currentNode[ nodeName ] = {};
currentNode[ nodeName ][ currentNode[ nodeName ].id ] = currentNode[ nodeName ];
}
if ( attrs.id !== '' ) currentNode[ nodeName ][ attrs.id ] = node;
} else if ( typeof attrs.id === 'number' ) {
currentNode[ nodeName ] = {};
currentNode[ nodeName ][ attrs.id ] = node;
} else if ( nodeName !== 'Properties70' ) {
if ( nodeName === 'PoseNode' ) currentNode[ nodeName ] = [ node ];
else currentNode[ nodeName ] = node;
}
}
if ( typeof attrs.id === 'number' ) node.id = attrs.id;
if ( attrs.name !== '' ) node.attrName = attrs.name;
if ( attrs.type !== '' ) node.attrType = attrs.type;
this.pushStack( node );
}
parseNodeAttr( attrs ) {
let id = attrs[ 0 ];
if ( attrs[ 0 ] !== '' ) {
id = parseInt( attrs[ 0 ] );
if ( isNaN( id ) ) {
id = attrs[ 0 ];
}
}
let name = '', type = '';
if ( attrs.length > 1 ) {
name = attrs[ 1 ].replace( /^(\w+)::/, '' );
type = attrs[ 2 ];
}
return { id: id, name: name, type: type };
}
parseNodeProperty( line, property, contentLine ) {
let propName = property[ 1 ].replace( /^"/, '' ).replace( /"$/, '' ).trim();
let propValue = property[ 2 ].replace( /^"/, '' ).replace( /"$/, '' ).trim();
// for special case: base64 image data follows "Content: ," line
// Content: ,
// "/9j/4RDaRXhpZgAATU0A..."
if ( propName === 'Content' && propValue === ',' ) {
propValue = contentLine.replace( /"/g, '' ).replace( /,$/, '' ).trim();
}
const currentNode = this.getCurrentNode();
const parentName = currentNode.name;
if ( parentName === 'Properties70' ) {
this.parseNodeSpecialProperty( line, propName, propValue );
return;
}
// Connections
if ( propName === 'C' ) {
const connProps = propValue.split( ',' ).slice( 1 );
const from = parseInt( connProps[ 0 ] );
const to = parseInt( connProps[ 1 ] );
let rest = propValue.split( ',' ).slice( 3 );
rest = rest.map( function ( elem ) {
return elem.trim().replace( /^"/, '' );
} );
propName = 'connections';
propValue = [ from, to ];
append( propValue, rest );
if ( currentNode[ propName ] === undefined ) {
currentNode[ propName ] = [];
}
}
// Node
if ( propName === 'Node' ) currentNode.id = propValue;
// connections
if ( propName in currentNode && Array.isArray( currentNode[ propName ] ) ) {
currentNode[ propName ].push( propValue );
} else {
if ( propName !== 'a' ) currentNode[ propName ] = propValue;
else currentNode.a = propValue;
}
this.setCurrentProp( currentNode, propName );
// convert string to array, unless it ends in ',' in which case more will be added to it
if ( propName === 'a' && propValue.slice( - 1 ) !== ',' ) {
currentNode.a = parseNumberArray( propValue );
}
}
parseNodePropertyContinued( line ) {
const currentNode = this.getCurrentNode();
currentNode.a += line;
// if the line doesn't end in ',' we have reached the end of the property value
// so convert the string to an array
if ( line.slice( - 1 ) !== ',' ) {
currentNode.a = parseNumberArray( currentNode.a );
}
}
// parse "Property70"
parseNodeSpecialProperty( line, propName, propValue ) {
// split this
// P: "Lcl Scaling", "Lcl Scaling", "", "A",1,1,1
// into array like below
// ["Lcl Scaling", "Lcl Scaling", "", "A", "1,1,1" ]
const props = propValue.split( '",' ).map( function ( prop ) {
return prop.trim().replace( /^\"/, '' ).replace( /\s/, '_' );
} );
const innerPropName = props[ 0 ];
const innerPropType1 = props[ 1 ];
const innerPropType2 = props[ 2 ];
const innerPropFlag = props[ 3 ];
let innerPropValue = props[ 4 ];
// cast values where needed, otherwise leave as strings
switch ( innerPropType1 ) {
case 'int':
case 'enum':
case 'bool':
case 'ULongLong':
case 'double':
case 'Number':
case 'FieldOfView':
innerPropValue = parseFloat( innerPropValue );
break;
case 'Color':
case 'ColorRGB':
case 'Vector3D':
case 'Lcl_Translation':
case 'Lcl_Rotation':
case 'Lcl_Scaling':
innerPropValue = parseNumberArray( innerPropValue );
break;
}
// CAUTION: these props must append to parent's parent
this.getPrevNode()[ innerPropName ] = {
'type': innerPropType1,
'type2': innerPropType2,
'flag': innerPropFlag,
'value': innerPropValue
};
this.setCurrentProp( this.getPrevNode(), innerPropName );
}
}
// Parse an FBX file in Binary format
class BinaryParser {
parse( buffer ) {
const reader = new BinaryReader( buffer );
reader.skip( 23 ); // skip magic 23 bytes
const version = reader.getUint32();
if ( version < 6400 ) {
throw new Error( 'THREE.FBXLoader: FBX version not supported, FileVersion: ' + version );
}
const allNodes = new FBXTree();
while ( ! this.endOfContent( reader ) ) {
const node = this.parseNode( reader, version );
if ( node !== null ) allNodes.add( node.name, node );
}
return allNodes;
}
// Check if reader has reached the end of content.
endOfContent( reader ) {
// footer size: 160bytes + 16-byte alignment padding
// - 16bytes: magic
// - padding til 16-byte alignment (at least 1byte?)
// (seems like some exporters embed fixed 15 or 16bytes?)
// - 4bytes: magic
// - 4bytes: version
// - 120bytes: zero
// - 16bytes: magic
if ( reader.size() % 16 === 0 ) {
return ( ( reader.getOffset() + 160 + 16 ) & ~ 0xf ) >= reader.size();
} else {
return reader.getOffset() + 160 + 16 >= reader.size();
}
}
// recursively parse nodes until the end of the file is reached
parseNode( reader, version ) {
const node = {};
// The first three data sizes depends on version.
const endOffset = ( version >= 7500 ) ? reader.getUint64() : reader.getUint32();
const numProperties = ( version >= 7500 ) ? reader.getUint64() : reader.getUint32();
( version >= 7500 ) ? reader.getUint64() : reader.getUint32(); // the returned propertyListLen is not used
const nameLen = reader.getUint8();
const name = reader.getString( nameLen );
// Regards this node as NULL-record if endOffset is zero
if ( endOffset === 0 ) return null;
const propertyList = [];
for ( let i = 0; i < numProperties; i ++ ) {
propertyList.push( this.parseProperty( reader ) );
}
// Regards the first three elements in propertyList as id, attrName, and attrType
const id = propertyList.length > 0 ? propertyList[ 0 ] : '';
const attrName = propertyList.length > 1 ? propertyList[ 1 ] : '';
const attrType = propertyList.length > 2 ? propertyList[ 2 ] : '';
// check if this node represents just a single property
// like (name, 0) set or (name2, [0, 1, 2]) set of {name: 0, name2: [0, 1, 2]}
node.singleProperty = ( numProperties === 1 && reader.getOffset() === endOffset ) ? true : false;
while ( endOffset > reader.getOffset() ) {
const subNode = this.parseNode( reader, version );
if ( subNode !== null ) this.parseSubNode( name, node, subNode );
}
node.propertyList = propertyList; // raw property list used by parent
if ( typeof id === 'number' ) node.id = id;
if ( attrName !== '' ) node.attrName = attrName;
if ( attrType !== '' ) node.attrType = attrType;
if ( name !== '' ) node.name = name;
return node;
}
parseSubNode( name, node, subNode ) {
// special case: child node is single property
if ( subNode.singleProperty === true ) {
const value = subNode.propertyList[ 0 ];
if ( Array.isArray( value ) ) {
node[ subNode.name ] = subNode;
subNode.a = value;
} else {
node[ subNode.name ] = value;
}
} else if ( name === 'Connections' && subNode.name === 'C' ) {
const array = [];
subNode.propertyList.forEach( function ( property, i ) {
// first Connection is FBX type (OO, OP, etc.). We'll discard these
if ( i !== 0 ) array.push( property );
} );
if ( node.connections === undefined ) {
node.connections = [];
}
node.connections.push( array );
} else if ( subNode.name === 'Properties70' ) {
const keys = Object.keys( subNode );
keys.forEach( function ( key ) {
node[ key ] = subNode[ key ];
} );
} else if ( name === 'Properties70' && subNode.name === 'P' ) {
let innerPropName = subNode.propertyList[ 0 ];
let innerPropType1 = subNode.propertyList[ 1 ];
const innerPropType2 = subNode.propertyList[ 2 ];
const innerPropFlag = subNode.propertyList[ 3 ];
let innerPropValue;
if ( innerPropName.indexOf( 'Lcl ' ) === 0 ) innerPropName = innerPropName.replace( 'Lcl ', 'Lcl_' );
if ( innerPropType1.indexOf( 'Lcl ' ) === 0 ) innerPropType1 = innerPropType1.replace( 'Lcl ', 'Lcl_' );
if ( innerPropType1 === 'Color' || innerPropType1 === 'ColorRGB' || innerPropType1 === 'Vector' || innerPropType1 === 'Vector3D' || innerPropType1.indexOf( 'Lcl_' ) === 0 ) {
innerPropValue = [
subNode.propertyList[ 4 ],
subNode.propertyList[ 5 ],
subNode.propertyList[ 6 ]
];
} else {
innerPropValue = subNode.propertyList[ 4 ];
}
// this will be copied to parent, see above
node[ innerPropName ] = {
'type': innerPropType1,
'type2': innerPropType2,
'flag': innerPropFlag,
'value': innerPropValue
};
} else if ( node[ subNode.name ] === undefined ) {
if ( typeof subNode.id === 'number' ) {
node[ subNode.name ] = {};
node[ subNode.name ][ subNode.id ] = subNode;
} else {
node[ subNode.name ] = subNode;
}
} else {
if ( subNode.name === 'PoseNode' ) {
if ( ! Array.isArray( node[ subNode.name ] ) ) {
node[ subNode.name ] = [ node[ subNode.name ] ];
}
node[ subNode.name ].push( subNode );
} else if ( node[ subNode.name ][ subNode.id ] === undefined ) {
node[ subNode.name ][ subNode.id ] = subNode;
}
}
}
parseProperty( reader ) {
const type = reader.getString( 1 );
let length;
switch ( type ) {
case 'C':
return reader.getBoolean();
case 'D':
return reader.getFloat64();
case 'F':
return reader.getFloat32();
case 'I':
return reader.getInt32();
case 'L':
return reader.getInt64();
case 'R':
length = reader.getUint32();
return reader.getArrayBuffer( length );
case 'S':
length = reader.getUint32();
return reader.getString( length );
case 'Y':
return reader.getInt16();
case 'b':
case 'c':
case 'd':
case 'f':
case 'i':
case 'l':
const arrayLength = reader.getUint32();
const encoding = reader.getUint32(); // 0: non-compressed, 1: compressed
const compressedLength = reader.getUint32();
if ( encoding === 0 ) {
switch ( type ) {
case 'b':
case 'c':
return reader.getBooleanArray( arrayLength );
case 'd':
return reader.getFloat64Array( arrayLength );
case 'f':
return reader.getFloat32Array( arrayLength );
case 'i':
return reader.getInt32Array( arrayLength );
case 'l':
return reader.getInt64Array( arrayLength );
}
}
const data = fflate.unzlibSync( new Uint8Array( reader.getArrayBuffer( compressedLength ) ) );
const reader2 = new BinaryReader( data.buffer );
switch ( type ) {
case 'b':
case 'c':
return reader2.getBooleanArray( arrayLength );
case 'd':
return reader2.getFloat64Array( arrayLength );
case 'f':
return reader2.getFloat32Array( arrayLength );
case 'i':
return reader2.getInt32Array( arrayLength );
case 'l':
return reader2.getInt64Array( arrayLength );
}
break; // cannot happen but is required by the DeepScan
default:
throw new Error( 'THREE.FBXLoader: Unknown property type ' + type );
}
}
}
class BinaryReader {
constructor( buffer, littleEndian ) {
this.dv = new DataView( buffer );
this.offset = 0;
this.littleEndian = ( littleEndian !== undefined ) ? littleEndian : true;
this._textDecoder = new TextDecoder();
}
getOffset() {
return this.offset;
}
size() {
return this.dv.buffer.byteLength;
}
skip( length ) {
this.offset += length;
}
// seems like true/false representation depends on exporter.
// true: 1 or 'Y'(=0x59), false: 0 or 'T'(=0x54)
// then sees LSB.
getBoolean() {
return ( this.getUint8() & 1 ) === 1;
}
getBooleanArray( size ) {
const a = [];
for ( let i = 0; i < size; i ++ ) {
a.push( this.getBoolean() );
}
return a;
}
getUint8() {
const value = this.dv.getUint8( this.offset );
this.offset += 1;
return value;
}
getInt16() {
const value = this.dv.getInt16( this.offset, this.littleEndian );
this.offset += 2;
return value;
}
getInt32() {
const value = this.dv.getInt32( this.offset, this.littleEndian );
this.offset += 4;
return value;
}
getInt32Array( size ) {
const a = [];
for ( let i = 0; i < size; i ++ ) {
a.push( this.getInt32() );
}
return a;
}
getUint32() {
const value = this.dv.getUint32( this.offset, this.littleEndian );
this.offset += 4;
return value;
}
// JavaScript doesn't support 64-bit integer so calculate this here
// 1 << 32 will return 1 so using multiply operation instead here.
// There's a possibility that this method returns wrong value if the value
// is out of the range between Number.MAX_SAFE_INTEGER and Number.MIN_SAFE_INTEGER.
// TODO: safely handle 64-bit integer
getInt64() {
let low, high;
if ( this.littleEndian ) {
low = this.getUint32();
high = this.getUint32();
} else {
high = this.getUint32();
low = this.getUint32();
}
// calculate negative value
if ( high & 0x80000000 ) {
high = ~ high & 0xFFFFFFFF;
low = ~ low & 0xFFFFFFFF;
if ( low === 0xFFFFFFFF ) high = ( high + 1 ) & 0xFFFFFFFF;
low = ( low + 1 ) & 0xFFFFFFFF;
return - ( high * 0x100000000 + low );
}
return high * 0x100000000 + low;
}
getInt64Array( size ) {
const a = [];
for ( let i = 0; i < size; i ++ ) {
a.push( this.getInt64() );
}
return a;
}
// Note: see getInt64() comment
getUint64() {
let low, high;
if ( this.littleEndian ) {
low = this.getUint32();
high = this.getUint32();
} else {
high = this.getUint32();
low = this.getUint32();
}
return high * 0x100000000 + low;
}
getFloat32() {
const value = this.dv.getFloat32( this.offset, this.littleEndian );
this.offset += 4;
return value;
}
getFloat32Array( size ) {
const a = [];
for ( let i = 0; i < size; i ++ ) {
a.push( this.getFloat32() );
}
return a;
}
getFloat64() {
const value = this.dv.getFloat64( this.offset, this.littleEndian );
this.offset += 8;
return value;
}
getFloat64Array( size ) {
const a = [];
for ( let i = 0; i < size; i ++ ) {
a.push( this.getFloat64() );
}
return a;
}
getArrayBuffer( size ) {
const value = this.dv.buffer.slice( this.offset, this.offset + size );
this.offset += size;
return value;
}
getString( size ) {
const start = this.offset;
let a = new Uint8Array( this.dv.buffer, start, size );
this.skip( size );
const nullByte = a.indexOf( 0 );
if ( nullByte >= 0 ) a = new Uint8Array( this.dv.buffer, start, nullByte );
return this._textDecoder.decode( a );
}
}
// FBXTree holds a representation of the FBX data, returned by the TextParser ( FBX ASCII format)
// and BinaryParser( FBX Binary format)
class FBXTree {
add( key, val ) {
this[ key ] = val;
}
}
// ************** UTILITY FUNCTIONS **************
function isFbxFormatBinary( buffer ) {
const CORRECT = 'Kaydara\u0020FBX\u0020Binary\u0020\u0020\0';
return buffer.byteLength >= CORRECT.length && CORRECT === convertArrayBufferToString( buffer, 0, CORRECT.length );
}
function isFbxFormatASCII( text ) {
const CORRECT = [ 'K', 'a', 'y', 'd', 'a', 'r', 'a', '\\', 'F', 'B', 'X', '\\', 'B', 'i', 'n', 'a', 'r', 'y', '\\', '\\' ];
let cursor = 0;
function read( offset ) {
const result = text[ offset - 1 ];
text = text.slice( cursor + offset );
cursor ++;
return result;
}
for ( let i = 0; i < CORRECT.length; ++ i ) {
const num = read( 1 );
if ( num === CORRECT[ i ] ) {
return false;
}
}
return true;
}
function getFbxVersion( text ) {
const versionRegExp = /FBXVersion: (\d+)/;
const match = text.match( versionRegExp );
if ( match ) {
const version = parseInt( match[ 1 ] );
return version;
}
throw new Error( 'THREE.FBXLoader: Cannot find the version number for the file given.' );
}
// Converts FBX ticks into real time seconds.
function convertFBXTimeToSeconds( time ) {
return time / 46186158000;
}
const dataArray = [];
// extracts the data from the correct position in the FBX array based on indexing type
function getData( polygonVertexIndex, polygonIndex, vertexIndex, infoObject ) {
let index;
switch ( infoObject.mappingType ) {
case 'ByPolygonVertex' :
index = polygonVertexIndex;
break;
case 'ByPolygon' :
index = polygonIndex;
break;
case 'ByVertice' :
index = vertexIndex;
break;
case 'AllSame' :
index = infoObject.indices[ 0 ];
break;
default :
console.warn( 'THREE.FBXLoader: unknown attribute mapping type ' + infoObject.mappingType );
}
if ( infoObject.referenceType === 'IndexToDirect' ) index = infoObject.indices[ index ];
const from = index * infoObject.dataSize;
const to = from + infoObject.dataSize;
return slice( dataArray, infoObject.buffer, from, to );
}
const tempEuler = new Euler();
const tempVec = new Vector3();
// generate transformation from FBX transform data
// ref: https://help.autodesk.com/view/FBX/2017/ENU/?guid=__files_GUID_10CDD63C_79C1_4F2D_BB28_AD2BE65A02ED_htm
// ref: http://docs.autodesk.com/FBX/2014/ENU/FBX-SDK-Documentation/index.html?url=cpp_ref/_transformations_2main_8cxx-example.html,topicNumber=cpp_ref__transformations_2main_8cxx_example_htmlfc10a1e1-b18d-4e72-9dc0-70d0f1959f5e
function generateTransform( transformData ) {
const lTranslationM = new Matrix4();
const lPreRotationM = new Matrix4();
const lRotationM = new Matrix4();
const lPostRotationM = new Matrix4();
const lScalingM = new Matrix4();
const lScalingPivotM = new Matrix4();
const lScalingOffsetM = new Matrix4();
const lRotationOffsetM = new Matrix4();
const lRotationPivotM = new Matrix4();
const lParentGX = new Matrix4();
const lParentLX = new Matrix4();
const lGlobalT = new Matrix4();
const inheritType = ( transformData.inheritType ) ? transformData.inheritType : 0;
if ( transformData.translation ) lTranslationM.setPosition( tempVec.fromArray( transformData.translation ) );
if ( transformData.preRotation ) {
const array = transformData.preRotation.map( MathUtils.degToRad );
array.push( transformData.eulerOrder || Euler.DEFAULT_ORDER );
lPreRotationM.makeRotationFromEuler( tempEuler.fromArray( array ) );
}
if ( transformData.rotation ) {
const array = transformData.rotation.map( MathUtils.degToRad );
array.push( transformData.eulerOrder || Euler.DEFAULT_ORDER );
lRotationM.makeRotationFromEuler( tempEuler.fromArray( array ) );
}
if ( transformData.postRotation ) {
const array = transformData.postRotation.map( MathUtils.degToRad );
array.push( transformData.eulerOrder || Euler.DEFAULT_ORDER );
lPostRotationM.makeRotationFromEuler( tempEuler.fromArray( array ) );
lPostRotationM.invert();
}
if ( transformData.scale ) lScalingM.scale( tempVec.fromArray( transformData.scale ) );
// Pivots and offsets
if ( transformData.scalingOffset ) lScalingOffsetM.setPosition( tempVec.fromArray( transformData.scalingOffset ) );
if ( transformData.scalingPivot ) lScalingPivotM.setPosition( tempVec.fromArray( transformData.scalingPivot ) );
if ( transformData.rotationOffset ) lRotationOffsetM.setPosition( tempVec.fromArray( transformData.rotationOffset ) );
if ( transformData.rotationPivot ) lRotationPivotM.setPosition( tempVec.fromArray( transformData.rotationPivot ) );
// parent transform
if ( transformData.parentMatrixWorld ) {
lParentLX.copy( transformData.parentMatrix );
lParentGX.copy( transformData.parentMatrixWorld );
}
const lLRM = lPreRotationM.clone().multiply( lRotationM ).multiply( lPostRotationM );
// Global Rotation
const lParentGRM = new Matrix4();
lParentGRM.extractRotation( lParentGX );
// Global Shear*Scaling
const lParentTM = new Matrix4();
lParentTM.copyPosition( lParentGX );
const lParentGRSM = lParentTM.clone().invert().multiply( lParentGX );
const lParentGSM = lParentGRM.clone().invert().multiply( lParentGRSM );
const lLSM = lScalingM;
const lGlobalRS = new Matrix4();
if ( inheritType === 0 ) {
lGlobalRS.copy( lParentGRM ).multiply( lLRM ).multiply( lParentGSM ).multiply( lLSM );
} else if ( inheritType === 1 ) {
lGlobalRS.copy( lParentGRM ).multiply( lParentGSM ).multiply( lLRM ).multiply( lLSM );
} else {
const lParentLSM = new Matrix4().scale( new Vector3().setFromMatrixScale( lParentLX ) );
const lParentLSM_inv = lParentLSM.clone().invert();
const lParentGSM_noLocal = lParentGSM.clone().multiply( lParentLSM_inv );
lGlobalRS.copy( lParentGRM ).multiply( lLRM ).multiply( lParentGSM_noLocal ).multiply( lLSM );
}
const lRotationPivotM_inv = lRotationPivotM.clone().invert();
const lScalingPivotM_inv = lScalingPivotM.clone().invert();
// Calculate the local transform matrix
let lTransform = lTranslationM.clone().multiply( lRotationOffsetM ).multiply( lRotationPivotM ).multiply( lPreRotationM ).multiply( lRotationM ).multiply( lPostRotationM ).multiply( lRotationPivotM_inv ).multiply( lScalingOffsetM ).multiply( lScalingPivotM ).multiply( lScalingM ).multiply( lScalingPivotM_inv );
const lLocalTWithAllPivotAndOffsetInfo = new Matrix4().copyPosition( lTransform );
const lGlobalTranslation = lParentGX.clone().multiply( lLocalTWithAllPivotAndOffsetInfo );
lGlobalT.copyPosition( lGlobalTranslation );
lTransform = lGlobalT.clone().multiply( lGlobalRS );
// from global to local
lTransform.premultiply( lParentGX.invert() );
return lTransform;
}
// Returns the three.js intrinsic Euler order corresponding to FBX extrinsic Euler order
// ref: http://help.autodesk.com/view/FBX/2017/ENU/?guid=__cpp_ref_class_fbx_euler_html
function getEulerOrder( order ) {
order = order || 0;
const enums = [
'ZYX', // -> XYZ extrinsic
'YZX', // -> XZY extrinsic
'XZY', // -> YZX extrinsic
'ZXY', // -> YXZ extrinsic
'YXZ', // -> ZXY extrinsic
'XYZ', // -> ZYX extrinsic
//'SphericXYZ', // not possible to support
];
if ( order === 6 ) {
console.warn( 'THREE.FBXLoader: unsupported Euler Order: Spherical XYZ. Animations and rotations may be incorrect.' );
return enums[ 0 ];
}
return enums[ order ];
}
// Parses comma separated list of numbers and returns them an array.
// Used internally by the TextParser
function parseNumberArray( value ) {
const array = value.split( ',' ).map( function ( val ) {
return parseFloat( val );
} );
return array;
}
function convertArrayBufferToString( buffer, from, to ) {
if ( from === undefined ) from = 0;
if ( to === undefined ) to = buffer.byteLength;
return new TextDecoder().decode( new Uint8Array( buffer, from, to ) );
}
function append( a, b ) {
for ( let i = 0, j = a.length, l = b.length; i < l; i ++, j ++ ) {
a[ j ] = b[ i ];
}
}
function slice( a, b, from, to ) {
for ( let i = from, j = 0; i < to; i ++, j ++ ) {
a[ j ] = b[ i ];
}
return a;
}
export { FBXLoader };